基于多物理耦合模型的水合物储层微波辐射天线结构参数优化

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS Case Studies in Thermal Engineering Pub Date : 2024-11-08 DOI:10.1016/j.csite.2024.105449
Xin Zhang , Yuting Wang , Hanxiang Wang , Shen Fan , Xiang Meng , Haolei Xu
{"title":"基于多物理耦合模型的水合物储层微波辐射天线结构参数优化","authors":"Xin Zhang ,&nbsp;Yuting Wang ,&nbsp;Hanxiang Wang ,&nbsp;Shen Fan ,&nbsp;Xiang Meng ,&nbsp;Haolei Xu","doi":"10.1016/j.csite.2024.105449","DOIUrl":null,"url":null,"abstract":"<div><div>Microwave heating has emerged as a promising technology in hydrate mining, attracting significant interest. This study focus on optimizing the structural parameters of microwave radiation antenna via a multiphysical coupling model. Subsequently the model is validated through experimental results. The microwave radiation simulation model is then developed to evaluate the antenna radiation performance and to elucidate the temperature distribution mechanism within the reservoir. The optimized structure features rectangle slots with an angle of 75° and a length of 28 mm. When this optimized antenna is deployed in a 1-m radius reservoir and heated for 10 h, it rises the average temperature from 2 °C to 7.11 °C. Moreover, the design improves the thermal uniformity within the gas hydrate reservoir, achieving a temperature standard deviation of 7.76 °C. Post-heating uniformity indicates effective microwave distribution. Overall, these results affirm that microwave heating, particularly when utilizing an optimized antenna, effectively enhances the reservoir's sensible heat and aids in hydrate decomposition.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105449"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural parameters optimization of microwave radiation antenna in hydrate reservoir based on multiphysical coupling model\",\"authors\":\"Xin Zhang ,&nbsp;Yuting Wang ,&nbsp;Hanxiang Wang ,&nbsp;Shen Fan ,&nbsp;Xiang Meng ,&nbsp;Haolei Xu\",\"doi\":\"10.1016/j.csite.2024.105449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microwave heating has emerged as a promising technology in hydrate mining, attracting significant interest. This study focus on optimizing the structural parameters of microwave radiation antenna via a multiphysical coupling model. Subsequently the model is validated through experimental results. The microwave radiation simulation model is then developed to evaluate the antenna radiation performance and to elucidate the temperature distribution mechanism within the reservoir. The optimized structure features rectangle slots with an angle of 75° and a length of 28 mm. When this optimized antenna is deployed in a 1-m radius reservoir and heated for 10 h, it rises the average temperature from 2 °C to 7.11 °C. Moreover, the design improves the thermal uniformity within the gas hydrate reservoir, achieving a temperature standard deviation of 7.76 °C. Post-heating uniformity indicates effective microwave distribution. Overall, these results affirm that microwave heating, particularly when utilizing an optimized antenna, effectively enhances the reservoir's sensible heat and aids in hydrate decomposition.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"64 \",\"pages\":\"Article 105449\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24014801\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24014801","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

微波加热已成为水合物开采领域一项前景广阔的技术,引起了人们的极大兴趣。本研究的重点是通过多物理耦合模型优化微波辐射天线的结构参数。随后通过实验结果对模型进行验证。然后建立微波辐射仿真模型,以评估天线的辐射性能,并阐明储层内的温度分布机制。优化后的结构具有角度为 75°、长度为 28 毫米的矩形槽。将这种优化的天线部署在半径为 1 米的水库中并加热 10 小时后,平均温度从 2 ℃ 上升到 7.11 ℃。此外,该设计还改善了天然气水合物储层内的热均匀性,使温度标准偏差达到 7.76 °C。加热后的均匀性表明微波分布有效。总之,这些结果证实了微波加热,特别是利用优化的天线时,能有效提高储层的显热,帮助水合物分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural parameters optimization of microwave radiation antenna in hydrate reservoir based on multiphysical coupling model
Microwave heating has emerged as a promising technology in hydrate mining, attracting significant interest. This study focus on optimizing the structural parameters of microwave radiation antenna via a multiphysical coupling model. Subsequently the model is validated through experimental results. The microwave radiation simulation model is then developed to evaluate the antenna radiation performance and to elucidate the temperature distribution mechanism within the reservoir. The optimized structure features rectangle slots with an angle of 75° and a length of 28 mm. When this optimized antenna is deployed in a 1-m radius reservoir and heated for 10 h, it rises the average temperature from 2 °C to 7.11 °C. Moreover, the design improves the thermal uniformity within the gas hydrate reservoir, achieving a temperature standard deviation of 7.76 °C. Post-heating uniformity indicates effective microwave distribution. Overall, these results affirm that microwave heating, particularly when utilizing an optimized antenna, effectively enhances the reservoir's sensible heat and aids in hydrate decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
期刊最新文献
Numerical analysis and experimental study of two-phase flow pattern and pressure drop characteristics in internally microfin tubes A novel high-temperature water cooling system utilizing cascaded cold energy from underground water plants in northern China Combustion characteristics of a 660 MW tangentially fired pulverized coal boiler considering different loads, burner combinations and horizontal deflection angles Performance evaluation of supercritical CO2 Brayton cycle with two-stage compression and intercooling Research on the mechanical and thermal properties of potting adhesive with different fillers of h-BN and MPCM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1