具有纳米粒子形状效应的汇流和发散通道中磁流体Al2O3-SiO2-TiO2/水三元混合纳米流体的热性能分析

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS Case Studies in Thermal Engineering Pub Date : 2024-11-10 DOI:10.1016/j.csite.2024.105429
C.M. Mohana , B. Rushi Kumar , Sunitha Nagarathnam , I.S. Shivakumara
{"title":"具有纳米粒子形状效应的汇流和发散通道中磁流体Al2O3-SiO2-TiO2/水三元混合纳米流体的热性能分析","authors":"C.M. Mohana ,&nbsp;B. Rushi Kumar ,&nbsp;Sunitha Nagarathnam ,&nbsp;I.S. Shivakumara","doi":"10.1016/j.csite.2024.105429","DOIUrl":null,"url":null,"abstract":"<div><div>Improving heat transfer in thermal systems is critical to achieving better results in a variety of systems. The study aims to investigate the laminar flow dynamics of Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-SiO<sub>2</sub>-TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/water hybrid nanofluids, emphasizing how the channel geometry affects the velocity, temperature distribution, and heat transfer efficiency. This understanding is crucial for optimizing industrial processes, such as cooling systems and heat exchangers. Effects of various nanoparticle shapes, joule heating, viscous dissipation, thermal radiation, and heat source/sink on the system’s behavior are evaluated. Governing partial differential equations are transformed into ordinary differential equations using similarity variables and are solved semi-analytically via the homotopy analysis method. As the Hartmann number increases from 1 to 7, the heat transfer rate rises from 0.02% to 0.9%. When the radiation parameter and Eckert number are varied from 0.05 to 0.2, the heat transfer rate increases significantly, from 1.2% to 4.86% and 3.43% to 13.73%, respectively. Heat transfer rate increased by 16.28% with heat source (<span><math><mrow><mi>Q</mi><mo>=</mo><mn>2</mn></mrow></math></span>) and decreased by -16.12% with heat sink (<span><math><mrow><mi>Q</mi><mo>=</mo><mo>−</mo><mn>2</mn></mrow></math></span>). Platelet-shaped nanoparticles demonstrate lower skin friction in divergent channels, whereas spherical nanoparticles exhibit higher skin friction; this trend reverses in convergent channels. Suspensions of nanoparticles with a 5% volume fraction achieve heat transfer rates of 1.88%, 4.07%, 10.54%, 19.20%, and 8.74% for spheres, bricks, cylinders, platelets, and blades, respectively. The study reveals that Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O, Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O, and Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-SiO<sub>2</sub>-TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O nanofluids have the best heat transfer rates for mono nanofluid, hybrid nanofluid, and ternary hybrid nanofluid by 15.24%, 19.92%, and 19.20%, respectively. Finally, multiple linear regression is employed to analyze the impact of relevant parameters on heat transfer rate and skin friction.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105429"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal performance analysis of magnetohydrodynamic Al2O3-SiO2-TiO2/water ternary hybrid nanofluid in converging and diverging channels with nanoparticle shape effects\",\"authors\":\"C.M. Mohana ,&nbsp;B. Rushi Kumar ,&nbsp;Sunitha Nagarathnam ,&nbsp;I.S. Shivakumara\",\"doi\":\"10.1016/j.csite.2024.105429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Improving heat transfer in thermal systems is critical to achieving better results in a variety of systems. The study aims to investigate the laminar flow dynamics of Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-SiO<sub>2</sub>-TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/water hybrid nanofluids, emphasizing how the channel geometry affects the velocity, temperature distribution, and heat transfer efficiency. This understanding is crucial for optimizing industrial processes, such as cooling systems and heat exchangers. Effects of various nanoparticle shapes, joule heating, viscous dissipation, thermal radiation, and heat source/sink on the system’s behavior are evaluated. Governing partial differential equations are transformed into ordinary differential equations using similarity variables and are solved semi-analytically via the homotopy analysis method. As the Hartmann number increases from 1 to 7, the heat transfer rate rises from 0.02% to 0.9%. When the radiation parameter and Eckert number are varied from 0.05 to 0.2, the heat transfer rate increases significantly, from 1.2% to 4.86% and 3.43% to 13.73%, respectively. Heat transfer rate increased by 16.28% with heat source (<span><math><mrow><mi>Q</mi><mo>=</mo><mn>2</mn></mrow></math></span>) and decreased by -16.12% with heat sink (<span><math><mrow><mi>Q</mi><mo>=</mo><mo>−</mo><mn>2</mn></mrow></math></span>). Platelet-shaped nanoparticles demonstrate lower skin friction in divergent channels, whereas spherical nanoparticles exhibit higher skin friction; this trend reverses in convergent channels. Suspensions of nanoparticles with a 5% volume fraction achieve heat transfer rates of 1.88%, 4.07%, 10.54%, 19.20%, and 8.74% for spheres, bricks, cylinders, platelets, and blades, respectively. The study reveals that Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O, Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O, and Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-SiO<sub>2</sub>-TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O nanofluids have the best heat transfer rates for mono nanofluid, hybrid nanofluid, and ternary hybrid nanofluid by 15.24%, 19.92%, and 19.20%, respectively. Finally, multiple linear regression is employed to analyze the impact of relevant parameters on heat transfer rate and skin friction.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"64 \",\"pages\":\"Article 105429\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24014606\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24014606","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

要在各种系统中取得更好的效果,改善热系统中的热传递至关重要。本研究旨在研究 Al2O3-SiO2-TiO2/ 水混合纳米流体的层流动力学,重点关注通道几何形状如何影响速度、温度分布和传热效率。这种理解对于优化冷却系统和热交换器等工业流程至关重要。我们评估了各种纳米粒子形状、焦耳热、粘性耗散、热辐射和热源/散热对系统行为的影响。利用相似变量将支配偏微分方程转换为常微分方程,并通过同调分析方法进行半解析求解。当哈特曼数从 1 增加到 7 时,传热率从 0.02% 上升到 0.9%。当辐射参数和埃克特数从 0.05 变化到 0.2 时,传热率显著增加,分别从 1.2% 增加到 4.86%,从 3.43% 增加到 13.73%。热源(Q=2)的传热率增加了 16.28%,而散热器(Q=2)的传热率降低了-16.12%。板状纳米粒子在发散通道中表现出较低的表皮摩擦力,而球状纳米粒子则表现出较高的表皮摩擦力;这一趋势在收敛通道中发生了逆转。体积分数为 5%的纳米颗粒悬浮液在球形、砖形、圆柱形、平板形和叶片形的传热率分别为 1.88%、4.07%、10.54%、19.20% 和 8.74%。研究表明,在单纳米流体、混合纳米流体和三元混合纳米流体中,Al2O3/H2O、Al2O3-TiO2/H2O 和 Al2O3-SiO2-TiO2/H2O 纳米流体的传热率最好,分别为 15.24%、19.92% 和 19.20%。最后,采用多元线性回归分析了相关参数对传热率和皮肤摩擦的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal performance analysis of magnetohydrodynamic Al2O3-SiO2-TiO2/water ternary hybrid nanofluid in converging and diverging channels with nanoparticle shape effects
Improving heat transfer in thermal systems is critical to achieving better results in a variety of systems. The study aims to investigate the laminar flow dynamics of Al2O3-SiO2-TiO2/water hybrid nanofluids, emphasizing how the channel geometry affects the velocity, temperature distribution, and heat transfer efficiency. This understanding is crucial for optimizing industrial processes, such as cooling systems and heat exchangers. Effects of various nanoparticle shapes, joule heating, viscous dissipation, thermal radiation, and heat source/sink on the system’s behavior are evaluated. Governing partial differential equations are transformed into ordinary differential equations using similarity variables and are solved semi-analytically via the homotopy analysis method. As the Hartmann number increases from 1 to 7, the heat transfer rate rises from 0.02% to 0.9%. When the radiation parameter and Eckert number are varied from 0.05 to 0.2, the heat transfer rate increases significantly, from 1.2% to 4.86% and 3.43% to 13.73%, respectively. Heat transfer rate increased by 16.28% with heat source (Q=2) and decreased by -16.12% with heat sink (Q=2). Platelet-shaped nanoparticles demonstrate lower skin friction in divergent channels, whereas spherical nanoparticles exhibit higher skin friction; this trend reverses in convergent channels. Suspensions of nanoparticles with a 5% volume fraction achieve heat transfer rates of 1.88%, 4.07%, 10.54%, 19.20%, and 8.74% for spheres, bricks, cylinders, platelets, and blades, respectively. The study reveals that Al2O3/H2O, Al2O3-TiO2/H2O, and Al2O3-SiO2-TiO2/H2O nanofluids have the best heat transfer rates for mono nanofluid, hybrid nanofluid, and ternary hybrid nanofluid by 15.24%, 19.92%, and 19.20%, respectively. Finally, multiple linear regression is employed to analyze the impact of relevant parameters on heat transfer rate and skin friction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
期刊最新文献
Numerical analysis and experimental study of two-phase flow pattern and pressure drop characteristics in internally microfin tubes A novel high-temperature water cooling system utilizing cascaded cold energy from underground water plants in northern China Combustion characteristics of a 660 MW tangentially fired pulverized coal boiler considering different loads, burner combinations and horizontal deflection angles Performance evaluation of supercritical CO2 Brayton cycle with two-stage compression and intercooling Research on the mechanical and thermal properties of potting adhesive with different fillers of h-BN and MPCM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1