利用显式有限差分法优化多孔介质中含有混合纳米颗粒的卡诺纳米流体的传热和传质

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS Case Studies in Thermal Engineering Pub Date : 2024-11-09 DOI:10.1016/j.csite.2024.105428
Ali Haider , M.S. Anwar , Yufeng Nie , Fahad Saleh Almubaddel , Magda Abd El-Rahman
{"title":"利用显式有限差分法优化多孔介质中含有混合纳米颗粒的卡诺纳米流体的传热和传质","authors":"Ali Haider ,&nbsp;M.S. Anwar ,&nbsp;Yufeng Nie ,&nbsp;Fahad Saleh Almubaddel ,&nbsp;Magda Abd El-Rahman","doi":"10.1016/j.csite.2024.105428","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose:</h3><div>This study investigates the effects of hybrid nanoparticles on thermal performance, focusing on convection, magnetic fields, diffusion, radiation, and chemical reactions in porous media. An <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span>-based fractional Carreau hybrid nanofluid is utilized to enhance heat transfer for industrial applications like gas turbines and condensers.</div></div><div><h3>Design/Methodology/Approach:</h3><div>The Caputo definition of fractional derivatives models the fluid flow, integrating integer and non-integer dynamics. The governing equations are dimensionally reduced and solved using the explicit finite difference method (EFD), with stability and convergence criteria ensuring accuracy. Key parameters, including the Sherwood and Nusselt numbers, are examined to understand thermal and mass transfer behavior.</div></div><div><h3>Findings:</h3><div>Results show that fractional exponents and thermophysical properties significantly influence flow behavior. Fluid velocity increases with the fractional exponent <span><math><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></math></span> due to reduced resistance, while higher porosity parameter <span><math><mrow><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo></mrow></math></span> decreases velocity. The temperature gradient decreases by 20.31% with the fractional exponent <span><math><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></math></span> and by 22.87% with the Weissenberg number. Skin friction increases by 28.17% with the magnetic parameter, and higher thermal conductivity enhances temperature profiles.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105428"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing heat and mass transfer in Carreau nanofluid with mixed nanoparticles in porous media using explicit finite difference method\",\"authors\":\"Ali Haider ,&nbsp;M.S. Anwar ,&nbsp;Yufeng Nie ,&nbsp;Fahad Saleh Almubaddel ,&nbsp;Magda Abd El-Rahman\",\"doi\":\"10.1016/j.csite.2024.105428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose:</h3><div>This study investigates the effects of hybrid nanoparticles on thermal performance, focusing on convection, magnetic fields, diffusion, radiation, and chemical reactions in porous media. An <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span>-based fractional Carreau hybrid nanofluid is utilized to enhance heat transfer for industrial applications like gas turbines and condensers.</div></div><div><h3>Design/Methodology/Approach:</h3><div>The Caputo definition of fractional derivatives models the fluid flow, integrating integer and non-integer dynamics. The governing equations are dimensionally reduced and solved using the explicit finite difference method (EFD), with stability and convergence criteria ensuring accuracy. Key parameters, including the Sherwood and Nusselt numbers, are examined to understand thermal and mass transfer behavior.</div></div><div><h3>Findings:</h3><div>Results show that fractional exponents and thermophysical properties significantly influence flow behavior. Fluid velocity increases with the fractional exponent <span><math><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></math></span> due to reduced resistance, while higher porosity parameter <span><math><mrow><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo></mrow></math></span> decreases velocity. The temperature gradient decreases by 20.31% with the fractional exponent <span><math><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></math></span> and by 22.87% with the Weissenberg number. Skin friction increases by 28.17% with the magnetic parameter, and higher thermal conductivity enhances temperature profiles.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"64 \",\"pages\":\"Article 105428\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X2401459X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X2401459X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究探讨了混合纳米粒子对热性能的影响,重点是多孔介质中的对流、磁场、扩散、辐射和化学反应。利用基于 H2O 的分数 Carreau 混合纳米流体来增强燃气轮机和冷凝器等工业应用的传热性能。利用显式有限差分法(EFD)对控制方程进行维度缩减和求解,并采用稳定性和收敛性标准确保精确性。研究结果表明,分数指数和热物理性质对流动行为有显著影响。由于阻力减小,流体速度随分数指数(α)的增加而增加,而孔隙度参数(λ4)越高,速度越小。温度梯度随分数指数(β)的增加而降低 20.31%,随魏森伯数的增加而降低 22.87%。表皮摩擦力随磁性参数的增加而增加 28.17%,热导率越高,温度曲线越明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing heat and mass transfer in Carreau nanofluid with mixed nanoparticles in porous media using explicit finite difference method

Purpose:

This study investigates the effects of hybrid nanoparticles on thermal performance, focusing on convection, magnetic fields, diffusion, radiation, and chemical reactions in porous media. An H2O-based fractional Carreau hybrid nanofluid is utilized to enhance heat transfer for industrial applications like gas turbines and condensers.

Design/Methodology/Approach:

The Caputo definition of fractional derivatives models the fluid flow, integrating integer and non-integer dynamics. The governing equations are dimensionally reduced and solved using the explicit finite difference method (EFD), with stability and convergence criteria ensuring accuracy. Key parameters, including the Sherwood and Nusselt numbers, are examined to understand thermal and mass transfer behavior.

Findings:

Results show that fractional exponents and thermophysical properties significantly influence flow behavior. Fluid velocity increases with the fractional exponent (α) due to reduced resistance, while higher porosity parameter (λ4) decreases velocity. The temperature gradient decreases by 20.31% with the fractional exponent (β) and by 22.87% with the Weissenberg number. Skin friction increases by 28.17% with the magnetic parameter, and higher thermal conductivity enhances temperature profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
期刊最新文献
Numerical analysis and experimental study of two-phase flow pattern and pressure drop characteristics in internally microfin tubes A novel high-temperature water cooling system utilizing cascaded cold energy from underground water plants in northern China Combustion characteristics of a 660 MW tangentially fired pulverized coal boiler considering different loads, burner combinations and horizontal deflection angles Performance evaluation of supercritical CO2 Brayton cycle with two-stage compression and intercooling Research on the mechanical and thermal properties of potting adhesive with different fillers of h-BN and MPCM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1