{"title":"用于分析倾斜波浪形多孔鳍片辐射对流热性能的优化物理信息神经网络","authors":"K. Chandan , Pudhari Srilatha , K. Karthik , M.E. Raghunandan , K.V. Nagaraja , E.A. Gopalakrishnan , R.S. Varun Kumar , Fehmi Gamaoun","doi":"10.1016/j.csite.2024.105423","DOIUrl":null,"url":null,"abstract":"<div><div>The significance of radiation and inclination on the temperature dispersion of the wavy porous fin has been addressed in the present study. Also, the influence of convection and internal heat generation on the thermal dissipation of the inclined wavy porous fin (IWPF) is examined. The pertinent temperature expression of the fin is represented using basic laws, and this equation is reduced to a dimensionless form via dimensionless variables. Additionally, a mix-encoding Genetic algorithm and Particle swarm optimization technique is shown to optimize the network hyperparameters. This resolves the issue of arbitrarily identifying the Physics informed neural networks (PINN's) ideal network and successfully limits local optimization during the training phase. Further, the equation is also resolved numerically using Runge-Kutta Fehlberg's fourth-fifth (RKF-45) scheme, and the solutions are subsequently used to verify the PINN model's applicability. The temperature results estimated by PINN and their associated RKF-45 values correlate excellently, which indicates the accuracy of the applied PINN model. The obtained findings denote that reduced measures of convective-conductive variables stimulate the IWPF's thermal distribution. An inclination angle of the fin has a significant impact on the thermal variation of the IWPF.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105423"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized physics-informed neural network for analyzing the radiative-convective thermal performance of an inclined wavy porous fin\",\"authors\":\"K. Chandan , Pudhari Srilatha , K. Karthik , M.E. Raghunandan , K.V. Nagaraja , E.A. Gopalakrishnan , R.S. Varun Kumar , Fehmi Gamaoun\",\"doi\":\"10.1016/j.csite.2024.105423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The significance of radiation and inclination on the temperature dispersion of the wavy porous fin has been addressed in the present study. Also, the influence of convection and internal heat generation on the thermal dissipation of the inclined wavy porous fin (IWPF) is examined. The pertinent temperature expression of the fin is represented using basic laws, and this equation is reduced to a dimensionless form via dimensionless variables. Additionally, a mix-encoding Genetic algorithm and Particle swarm optimization technique is shown to optimize the network hyperparameters. This resolves the issue of arbitrarily identifying the Physics informed neural networks (PINN's) ideal network and successfully limits local optimization during the training phase. Further, the equation is also resolved numerically using Runge-Kutta Fehlberg's fourth-fifth (RKF-45) scheme, and the solutions are subsequently used to verify the PINN model's applicability. The temperature results estimated by PINN and their associated RKF-45 values correlate excellently, which indicates the accuracy of the applied PINN model. The obtained findings denote that reduced measures of convective-conductive variables stimulate the IWPF's thermal distribution. An inclination angle of the fin has a significant impact on the thermal variation of the IWPF.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"64 \",\"pages\":\"Article 105423\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24014540\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24014540","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Optimized physics-informed neural network for analyzing the radiative-convective thermal performance of an inclined wavy porous fin
The significance of radiation and inclination on the temperature dispersion of the wavy porous fin has been addressed in the present study. Also, the influence of convection and internal heat generation on the thermal dissipation of the inclined wavy porous fin (IWPF) is examined. The pertinent temperature expression of the fin is represented using basic laws, and this equation is reduced to a dimensionless form via dimensionless variables. Additionally, a mix-encoding Genetic algorithm and Particle swarm optimization technique is shown to optimize the network hyperparameters. This resolves the issue of arbitrarily identifying the Physics informed neural networks (PINN's) ideal network and successfully limits local optimization during the training phase. Further, the equation is also resolved numerically using Runge-Kutta Fehlberg's fourth-fifth (RKF-45) scheme, and the solutions are subsequently used to verify the PINN model's applicability. The temperature results estimated by PINN and their associated RKF-45 values correlate excellently, which indicates the accuracy of the applied PINN model. The obtained findings denote that reduced measures of convective-conductive variables stimulate the IWPF's thermal distribution. An inclination angle of the fin has a significant impact on the thermal variation of the IWPF.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.