{"title":"带电航天器的轨道运动控制","authors":"M.A. Klyushin , A.A. Tikhonov , D.K. Giri","doi":"10.1016/j.actaastro.2024.10.043","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the orbital motion of an electrically charged spacecraft in the gravitational and magnetic fields of the Earth is investigated. The “direct magnetic dipole” is considered as a model of the geomagnetic field. The nonlinear non-autonomous system of differential equations of motion of the spacecraft center of mass in the Cartesian and spherical coordinate systems is derived. The analytical study of the influence of the Lorentz force on the orbital motion of a charged spacecraft is carried out. The approximate solution of the differential system is found. The results of numerical simulation of the spacecraft orbital motion based on the derived system of differential equations are presented. The analytical and numerical solutions are compared. The problem of stabilizing the spacecraft’s center of mass in the orbital plane is considered. Feedback control methods based on the use of jet engines are proposed. The technical justification of the proposed control methods is carried out. As a result, stabilization of an electrically charged spacecraft in a small neighborhood of the plane of the initial orbit is achieved. The motion of a spacecraft with a variable electric charge is considered. Methods of controlling orbital motion due to low thrust as a result of the Lorentz force effect are proposed.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 626-636"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbital motion control of an electrically charged spacecraft\",\"authors\":\"M.A. Klyushin , A.A. Tikhonov , D.K. Giri\",\"doi\":\"10.1016/j.actaastro.2024.10.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, the orbital motion of an electrically charged spacecraft in the gravitational and magnetic fields of the Earth is investigated. The “direct magnetic dipole” is considered as a model of the geomagnetic field. The nonlinear non-autonomous system of differential equations of motion of the spacecraft center of mass in the Cartesian and spherical coordinate systems is derived. The analytical study of the influence of the Lorentz force on the orbital motion of a charged spacecraft is carried out. The approximate solution of the differential system is found. The results of numerical simulation of the spacecraft orbital motion based on the derived system of differential equations are presented. The analytical and numerical solutions are compared. The problem of stabilizing the spacecraft’s center of mass in the orbital plane is considered. Feedback control methods based on the use of jet engines are proposed. The technical justification of the proposed control methods is carried out. As a result, stabilization of an electrically charged spacecraft in a small neighborhood of the plane of the initial orbit is achieved. The motion of a spacecraft with a variable electric charge is considered. Methods of controlling orbital motion due to low thrust as a result of the Lorentz force effect are proposed.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"226 \",\"pages\":\"Pages 626-636\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576524006179\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006179","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Orbital motion control of an electrically charged spacecraft
In this paper, the orbital motion of an electrically charged spacecraft in the gravitational and magnetic fields of the Earth is investigated. The “direct magnetic dipole” is considered as a model of the geomagnetic field. The nonlinear non-autonomous system of differential equations of motion of the spacecraft center of mass in the Cartesian and spherical coordinate systems is derived. The analytical study of the influence of the Lorentz force on the orbital motion of a charged spacecraft is carried out. The approximate solution of the differential system is found. The results of numerical simulation of the spacecraft orbital motion based on the derived system of differential equations are presented. The analytical and numerical solutions are compared. The problem of stabilizing the spacecraft’s center of mass in the orbital plane is considered. Feedback control methods based on the use of jet engines are proposed. The technical justification of the proposed control methods is carried out. As a result, stabilization of an electrically charged spacecraft in a small neighborhood of the plane of the initial orbit is achieved. The motion of a spacecraft with a variable electric charge is considered. Methods of controlling orbital motion due to low thrust as a result of the Lorentz force effect are proposed.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.