{"title":"电动系绳和制动帆组合脱轨设计","authors":"Heng Jiang , Rui Zhong , Rui Qi","doi":"10.1016/j.actaastro.2024.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>Given the growing threat of an impending space debris crisis, nations worldwide have intensified their research efforts in satellite deorbiting technologies. Electrodynamic tether and braking sails stand out as popular methods for spacecraft deorbiting that do away with the necessity for propellant. However, these methods possess their own set of limitations. This paper presents a holistic dynamical model for a fusion of electrodynamic tether and braking sails. The aim is to avoid the complex nonlinear dynamics during the deployment, retrieval, and dwell time of electrodynamic tether, while compensating for the insufficient trust generated by braking sails in high orbital environments. The objective is to enable satellite to deorbit swiftly and stably under a broader range of conditions. Specifically accomplishing the following three aspects: conceptualizing the design of an ideal equipment, implementing simulated deorbiting process, and conducting an efficiency comparative analysis with prevalent current deorbiting methods. Through numerical simulations, the effectiveness and feasibility of this proposed design have been validated.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 669-678"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrodynamic tether and brake sails combination deorbit design\",\"authors\":\"Heng Jiang , Rui Zhong , Rui Qi\",\"doi\":\"10.1016/j.actaastro.2024.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given the growing threat of an impending space debris crisis, nations worldwide have intensified their research efforts in satellite deorbiting technologies. Electrodynamic tether and braking sails stand out as popular methods for spacecraft deorbiting that do away with the necessity for propellant. However, these methods possess their own set of limitations. This paper presents a holistic dynamical model for a fusion of electrodynamic tether and braking sails. The aim is to avoid the complex nonlinear dynamics during the deployment, retrieval, and dwell time of electrodynamic tether, while compensating for the insufficient trust generated by braking sails in high orbital environments. The objective is to enable satellite to deorbit swiftly and stably under a broader range of conditions. Specifically accomplishing the following three aspects: conceptualizing the design of an ideal equipment, implementing simulated deorbiting process, and conducting an efficiency comparative analysis with prevalent current deorbiting methods. Through numerical simulations, the effectiveness and feasibility of this proposed design have been validated.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"226 \",\"pages\":\"Pages 669-678\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576524006544\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006544","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Electrodynamic tether and brake sails combination deorbit design
Given the growing threat of an impending space debris crisis, nations worldwide have intensified their research efforts in satellite deorbiting technologies. Electrodynamic tether and braking sails stand out as popular methods for spacecraft deorbiting that do away with the necessity for propellant. However, these methods possess their own set of limitations. This paper presents a holistic dynamical model for a fusion of electrodynamic tether and braking sails. The aim is to avoid the complex nonlinear dynamics during the deployment, retrieval, and dwell time of electrodynamic tether, while compensating for the insufficient trust generated by braking sails in high orbital environments. The objective is to enable satellite to deorbit swiftly and stably under a broader range of conditions. Specifically accomplishing the following three aspects: conceptualizing the design of an ideal equipment, implementing simulated deorbiting process, and conducting an efficiency comparative analysis with prevalent current deorbiting methods. Through numerical simulations, the effectiveness and feasibility of this proposed design have been validated.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.