Shih-Feng Tseng , Han-Ting Tsai , Chang-Chun Lee , Chil-Chyuan Kuo
{"title":"用于高响应柔性应变传感器的激光诱导纳米-Ag/石墨烯复合材料","authors":"Shih-Feng Tseng , Han-Ting Tsai , Chang-Chun Lee , Chil-Chyuan Kuo","doi":"10.1016/j.compositesa.2024.108586","DOIUrl":null,"url":null,"abstract":"<div><div>In this focused on laser-induced nano-Ag/graphene composites were evaluated as an electrode layer for highly responsive flexible strain sensors. The dimension of Ag nanoparticles was adjusted using potassium hydroxide (KOH) at different concentrations. Moreover, the characteristics of laser-induced nano-Ag/graphene composites were examined by scanning electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. The performance of the proposed sensor was tested using a single-column universal test equipment combined with a precision electrical meter. The 6 M KOH nano-Ag/graphene-based strain sensor had large gauge factors of 23.1 under a micro-strain of 0.0042 % and 492.95 under a 16 % strain. Furthermore, the strain sensor under 10 cycles of stretching/releasing demonstrated excellent linearity, repeatability, and stability of response in different strain ranges of 1 % to 13 % at 2 % intervals. The sensor under 3 % and 5 % strain for 1000 cycles of stretching/releasing tests exhibited good stability and durability. The proposed sensor used to detect wind turbine blade deformation exhibited better response performance. The developed sensor holds a great application potential in real-time monitoring of the structural health of bridges and deformation of railway tracks, tracking human movement, identifying hill slides, assessing fatigue of mechanical components, etc.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"188 ","pages":"Article 108586"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-induced nano-Ag/graphene composites for highly responsive flexible strain sensors\",\"authors\":\"Shih-Feng Tseng , Han-Ting Tsai , Chang-Chun Lee , Chil-Chyuan Kuo\",\"doi\":\"10.1016/j.compositesa.2024.108586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this focused on laser-induced nano-Ag/graphene composites were evaluated as an electrode layer for highly responsive flexible strain sensors. The dimension of Ag nanoparticles was adjusted using potassium hydroxide (KOH) at different concentrations. Moreover, the characteristics of laser-induced nano-Ag/graphene composites were examined by scanning electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. The performance of the proposed sensor was tested using a single-column universal test equipment combined with a precision electrical meter. The 6 M KOH nano-Ag/graphene-based strain sensor had large gauge factors of 23.1 under a micro-strain of 0.0042 % and 492.95 under a 16 % strain. Furthermore, the strain sensor under 10 cycles of stretching/releasing demonstrated excellent linearity, repeatability, and stability of response in different strain ranges of 1 % to 13 % at 2 % intervals. The sensor under 3 % and 5 % strain for 1000 cycles of stretching/releasing tests exhibited good stability and durability. The proposed sensor used to detect wind turbine blade deformation exhibited better response performance. The developed sensor holds a great application potential in real-time monitoring of the structural health of bridges and deformation of railway tracks, tracking human movement, identifying hill slides, assessing fatigue of mechanical components, etc.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":\"188 \",\"pages\":\"Article 108586\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X24005840\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24005840","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Laser-induced nano-Ag/graphene composites for highly responsive flexible strain sensors
In this focused on laser-induced nano-Ag/graphene composites were evaluated as an electrode layer for highly responsive flexible strain sensors. The dimension of Ag nanoparticles was adjusted using potassium hydroxide (KOH) at different concentrations. Moreover, the characteristics of laser-induced nano-Ag/graphene composites were examined by scanning electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. The performance of the proposed sensor was tested using a single-column universal test equipment combined with a precision electrical meter. The 6 M KOH nano-Ag/graphene-based strain sensor had large gauge factors of 23.1 under a micro-strain of 0.0042 % and 492.95 under a 16 % strain. Furthermore, the strain sensor under 10 cycles of stretching/releasing demonstrated excellent linearity, repeatability, and stability of response in different strain ranges of 1 % to 13 % at 2 % intervals. The sensor under 3 % and 5 % strain for 1000 cycles of stretching/releasing tests exhibited good stability and durability. The proposed sensor used to detect wind turbine blade deformation exhibited better response performance. The developed sensor holds a great application potential in real-time monitoring of the structural health of bridges and deformation of railway tracks, tracking human movement, identifying hill slides, assessing fatigue of mechanical components, etc.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.