Milad Abolfazli , Milad Bazli , Sashidhar Regmi , Milad Shakiba , Caleb O. Ojo , Ali Rajabipour , Reza Hassanli , Ramin Shahbazi , Mehrdad Arashpour
{"title":"Impact of Fire-Retardant coating on the residual compressive strength of hybrid Fibre-Reinforced polymer tubes exposed to elevated temperature","authors":"Milad Abolfazli , Milad Bazli , Sashidhar Regmi , Milad Shakiba , Caleb O. Ojo , Ali Rajabipour , Reza Hassanli , Ramin Shahbazi , Mehrdad Arashpour","doi":"10.1016/j.compositesa.2025.108831","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing the fire resistance of fibre‐reinforced polymer (FRP) composites is vital for ensuring structural safety in fire‐prone infrastructures. This study investigates the thermal degradation and residual compressive strength of filament-wound hybrid fibre-reinforced polymer (HFRP) tubes exposed to temperatures ranging from 25 °C to 350 °C. The tubes, composed of 50 % carbon fibre and 50 % E-glass fibre, with a 60:40 fibre–resin ratio, were subjected to thermal conditioning to simulate real-world fire exposure. For uncoated tubes, a balance between resin post-curing and pyrolytic degradation preserves compressive strength up to 200 °C, but strength sharply decreases beyond this threshold due to intensified pyrolysis, with virtually no residual strength at 350 °C. Fire-retardant coatings, Nullifire SC902, activate above 200 °C, providing limited protection, and the samples retain 20–21 % of their original compressive strength at 350 °C. As revealed by complementary Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FTIR) analyses, key degradation mechanisms include matrix degradation and cracking and fibre exposure. Overall, the fire-retardant coating offers some benefits at higher temperatures, but its effectiveness is limited by activation thresholds and prolonged exposure. The findings show the need for further optimisation of fire-resistant systems for HFRP composites to improve their safety and durability in fire-prone applications.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"193 ","pages":"Article 108831"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25001253","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing the fire resistance of fibre‐reinforced polymer (FRP) composites is vital for ensuring structural safety in fire‐prone infrastructures. This study investigates the thermal degradation and residual compressive strength of filament-wound hybrid fibre-reinforced polymer (HFRP) tubes exposed to temperatures ranging from 25 °C to 350 °C. The tubes, composed of 50 % carbon fibre and 50 % E-glass fibre, with a 60:40 fibre–resin ratio, were subjected to thermal conditioning to simulate real-world fire exposure. For uncoated tubes, a balance between resin post-curing and pyrolytic degradation preserves compressive strength up to 200 °C, but strength sharply decreases beyond this threshold due to intensified pyrolysis, with virtually no residual strength at 350 °C. Fire-retardant coatings, Nullifire SC902, activate above 200 °C, providing limited protection, and the samples retain 20–21 % of their original compressive strength at 350 °C. As revealed by complementary Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FTIR) analyses, key degradation mechanisms include matrix degradation and cracking and fibre exposure. Overall, the fire-retardant coating offers some benefits at higher temperatures, but its effectiveness is limited by activation thresholds and prolonged exposure. The findings show the need for further optimisation of fire-resistant systems for HFRP composites to improve their safety and durability in fire-prone applications.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.