{"title":"适应沿海河口复杂地形的洪水调节生态系统服务分析与安全模式优化,以实现弹性管理:厦门案例研究","authors":"Jian Tian , Xuan Chen , Suiping Zeng","doi":"10.1016/j.ijdrr.2024.104946","DOIUrl":null,"url":null,"abstract":"<div><div>The flood risk in coastal areas has been exacerbated by global climate change. Research on flood risk assessment is emerging from the perspective of supply and demand for flood regulation ecosystem services (FRES). However, there are still limitations in the evaluation of lowland regulation, implementation of intelligent algorithms, comparison of multi-grain FRES supply and demand, and overall optimization of security pattern. Therefore, we propose a comprehensive FRES supply assessment method that incorporates soil and vegetation, lowland, and water regulations. Additionally, we introduce the random forest model to enhance the FRES demand assessment approach. Two grain sizes of the sub-catchment area and grid unit are used to compare FRES supply and demand. Using Xiamen as a case study, this research unveils the following findings: (1) Significant disparities exist between the assessment outcomes of FRES based on multiple types of regulatory services and those solely considering soil and vegetation regulation. The areas with high FRES supply extend beyond upper mountain forests to include local lower plains exhibiting strong capabilities for lowland or water system regulation. (2) Consistent yet distinct results are observed when comparing two grain sizes. Imbalances in supply and demand occur in estuaries, bays, and densely built-up regions. Sub-catchment units exhibit wider distribution and concentration, while grid units display more dispersed patterns. (3) In terms of in-situ regulation, 26.77 km<sup>2</sup> ecological protection area, 9.85 km<sup>2</sup> ecological restoration area, and 119.59 km<sup>2</sup> construction land flood control intervention area are demarcated. From a directional regulation perspective, 22 FRES corridors connecting source and sink areas along with 24 pinch points are identified. Optimizing security patterns through coordinated management of FRES supply and demand can enhance the resilience of coastal estuaries.</div></div>","PeriodicalId":13915,"journal":{"name":"International journal of disaster risk reduction","volume":"114 ","pages":"Article 104946"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flood regulation ecosystem services analysis and security pattern optimization for resilient management adapted to the complex terrain of coastal estuaries: A case study in Xiamen\",\"authors\":\"Jian Tian , Xuan Chen , Suiping Zeng\",\"doi\":\"10.1016/j.ijdrr.2024.104946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The flood risk in coastal areas has been exacerbated by global climate change. Research on flood risk assessment is emerging from the perspective of supply and demand for flood regulation ecosystem services (FRES). However, there are still limitations in the evaluation of lowland regulation, implementation of intelligent algorithms, comparison of multi-grain FRES supply and demand, and overall optimization of security pattern. Therefore, we propose a comprehensive FRES supply assessment method that incorporates soil and vegetation, lowland, and water regulations. Additionally, we introduce the random forest model to enhance the FRES demand assessment approach. Two grain sizes of the sub-catchment area and grid unit are used to compare FRES supply and demand. Using Xiamen as a case study, this research unveils the following findings: (1) Significant disparities exist between the assessment outcomes of FRES based on multiple types of regulatory services and those solely considering soil and vegetation regulation. The areas with high FRES supply extend beyond upper mountain forests to include local lower plains exhibiting strong capabilities for lowland or water system regulation. (2) Consistent yet distinct results are observed when comparing two grain sizes. Imbalances in supply and demand occur in estuaries, bays, and densely built-up regions. Sub-catchment units exhibit wider distribution and concentration, while grid units display more dispersed patterns. (3) In terms of in-situ regulation, 26.77 km<sup>2</sup> ecological protection area, 9.85 km<sup>2</sup> ecological restoration area, and 119.59 km<sup>2</sup> construction land flood control intervention area are demarcated. From a directional regulation perspective, 22 FRES corridors connecting source and sink areas along with 24 pinch points are identified. Optimizing security patterns through coordinated management of FRES supply and demand can enhance the resilience of coastal estuaries.</div></div>\",\"PeriodicalId\":13915,\"journal\":{\"name\":\"International journal of disaster risk reduction\",\"volume\":\"114 \",\"pages\":\"Article 104946\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of disaster risk reduction\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212420924007088\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of disaster risk reduction","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212420924007088","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Flood regulation ecosystem services analysis and security pattern optimization for resilient management adapted to the complex terrain of coastal estuaries: A case study in Xiamen
The flood risk in coastal areas has been exacerbated by global climate change. Research on flood risk assessment is emerging from the perspective of supply and demand for flood regulation ecosystem services (FRES). However, there are still limitations in the evaluation of lowland regulation, implementation of intelligent algorithms, comparison of multi-grain FRES supply and demand, and overall optimization of security pattern. Therefore, we propose a comprehensive FRES supply assessment method that incorporates soil and vegetation, lowland, and water regulations. Additionally, we introduce the random forest model to enhance the FRES demand assessment approach. Two grain sizes of the sub-catchment area and grid unit are used to compare FRES supply and demand. Using Xiamen as a case study, this research unveils the following findings: (1) Significant disparities exist between the assessment outcomes of FRES based on multiple types of regulatory services and those solely considering soil and vegetation regulation. The areas with high FRES supply extend beyond upper mountain forests to include local lower plains exhibiting strong capabilities for lowland or water system regulation. (2) Consistent yet distinct results are observed when comparing two grain sizes. Imbalances in supply and demand occur in estuaries, bays, and densely built-up regions. Sub-catchment units exhibit wider distribution and concentration, while grid units display more dispersed patterns. (3) In terms of in-situ regulation, 26.77 km2 ecological protection area, 9.85 km2 ecological restoration area, and 119.59 km2 construction land flood control intervention area are demarcated. From a directional regulation perspective, 22 FRES corridors connecting source and sink areas along with 24 pinch points are identified. Optimizing security patterns through coordinated management of FRES supply and demand can enhance the resilience of coastal estuaries.
期刊介绍:
The International Journal of Disaster Risk Reduction (IJDRR) is the journal for researchers, policymakers and practitioners across diverse disciplines: earth sciences and their implications; environmental sciences; engineering; urban studies; geography; and the social sciences. IJDRR publishes fundamental and applied research, critical reviews, policy papers and case studies with a particular focus on multi-disciplinary research that aims to reduce the impact of natural, technological, social and intentional disasters. IJDRR stimulates exchange of ideas and knowledge transfer on disaster research, mitigation, adaptation, prevention and risk reduction at all geographical scales: local, national and international.
Key topics:-
-multifaceted disaster and cascading disasters
-the development of disaster risk reduction strategies and techniques
-discussion and development of effective warning and educational systems for risk management at all levels
-disasters associated with climate change
-vulnerability analysis and vulnerability trends
-emerging risks
-resilience against disasters.
The journal particularly encourages papers that approach risk from a multi-disciplinary perspective.