{"title":"未来气候情景对建筑外墙热性能和复原力的影响:加拿大气候案例研究","authors":"Shahrzad Soudian, Umberto Berardi","doi":"10.1016/j.buildenv.2024.112245","DOIUrl":null,"url":null,"abstract":"<div><div>Buildings in urban areas are responsible for a significant share of GHG emissions that directly contribute to climate change. Nevertheless, the built environment is vulnerable to the changing climate. Particularly, the unpredictable weather threatens the performance of building components, durability of building materials, and indoor environmental comfort. In this study, the impact of future climate on thermal performance of building façades in the Canadian climate is investigated using simulation analysis. To account for different climate conditions, three future weather scenarios pertaining to global temperature rise of 0.5 °C, 1.5 °C, and 2.5 °C were compared with historical weather data. Both hourly and Typical Meteorological Year (TMY) weather data were studied. The results, including thermal transmittance, heat flux, moisture content, and façade temperature were compared. This comparison could show the applicability of using averaged TMY data compared to the large hourly dataset. The results show a pattern of change in the façade's thermal and hygrothermal performance as temperature, relative humidity and solar radiation norms change in both seasons. The comparison between the TMY and the Yearly data showed an underestimation of heat transfer within the façade when the TMY data is used. The historical TMY data results showed the inadequacy of this weather file for climate impact assessments of facades in both summer and winter. The approach used in this study can be repeated for different climate conditions, acting as a tool to design façades and predict their performance in face of a changing climate.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"267 ","pages":"Article 112245"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of future climate scenarios on thermal performance and resilience of building façades: Canadian climate case study\",\"authors\":\"Shahrzad Soudian, Umberto Berardi\",\"doi\":\"10.1016/j.buildenv.2024.112245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Buildings in urban areas are responsible for a significant share of GHG emissions that directly contribute to climate change. Nevertheless, the built environment is vulnerable to the changing climate. Particularly, the unpredictable weather threatens the performance of building components, durability of building materials, and indoor environmental comfort. In this study, the impact of future climate on thermal performance of building façades in the Canadian climate is investigated using simulation analysis. To account for different climate conditions, three future weather scenarios pertaining to global temperature rise of 0.5 °C, 1.5 °C, and 2.5 °C were compared with historical weather data. Both hourly and Typical Meteorological Year (TMY) weather data were studied. The results, including thermal transmittance, heat flux, moisture content, and façade temperature were compared. This comparison could show the applicability of using averaged TMY data compared to the large hourly dataset. The results show a pattern of change in the façade's thermal and hygrothermal performance as temperature, relative humidity and solar radiation norms change in both seasons. The comparison between the TMY and the Yearly data showed an underestimation of heat transfer within the façade when the TMY data is used. The historical TMY data results showed the inadequacy of this weather file for climate impact assessments of facades in both summer and winter. The approach used in this study can be repeated for different climate conditions, acting as a tool to design façades and predict their performance in face of a changing climate.</div></div>\",\"PeriodicalId\":9273,\"journal\":{\"name\":\"Building and Environment\",\"volume\":\"267 \",\"pages\":\"Article 112245\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360132324010874\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360132324010874","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Impact of future climate scenarios on thermal performance and resilience of building façades: Canadian climate case study
Buildings in urban areas are responsible for a significant share of GHG emissions that directly contribute to climate change. Nevertheless, the built environment is vulnerable to the changing climate. Particularly, the unpredictable weather threatens the performance of building components, durability of building materials, and indoor environmental comfort. In this study, the impact of future climate on thermal performance of building façades in the Canadian climate is investigated using simulation analysis. To account for different climate conditions, three future weather scenarios pertaining to global temperature rise of 0.5 °C, 1.5 °C, and 2.5 °C were compared with historical weather data. Both hourly and Typical Meteorological Year (TMY) weather data were studied. The results, including thermal transmittance, heat flux, moisture content, and façade temperature were compared. This comparison could show the applicability of using averaged TMY data compared to the large hourly dataset. The results show a pattern of change in the façade's thermal and hygrothermal performance as temperature, relative humidity and solar radiation norms change in both seasons. The comparison between the TMY and the Yearly data showed an underestimation of heat transfer within the façade when the TMY data is used. The historical TMY data results showed the inadequacy of this weather file for climate impact assessments of facades in both summer and winter. The approach used in this study can be repeated for different climate conditions, acting as a tool to design façades and predict their performance in face of a changing climate.
期刊介绍:
Building and Environment, an international journal, is dedicated to publishing original research papers, comprehensive review articles, editorials, and short communications in the fields of building science, urban physics, and human interaction with the indoor and outdoor built environment. The journal emphasizes innovative technologies and knowledge verified through measurement and analysis. It covers environmental performance across various spatial scales, from cities and communities to buildings and systems, fostering collaborative, multi-disciplinary research with broader significance.