机组承诺中的频率安全约束与风力涡轮机的详细频率响应行为

IF 9 1区 工程技术 Q1 ENERGY & FUELS Energy Pub Date : 2024-11-08 DOI:10.1016/j.energy.2024.133735
Jianshu Yu, Pei Yong, Juan Yu, Zhifang Yang
{"title":"机组承诺中的频率安全约束与风力涡轮机的详细频率响应行为","authors":"Jianshu Yu,&nbsp;Pei Yong,&nbsp;Juan Yu,&nbsp;Zhifang Yang","doi":"10.1016/j.energy.2024.133735","DOIUrl":null,"url":null,"abstract":"<div><div>With the high penetration of wind turbines, the necessity of incorporating frequency security considerations into power system scheduling rises. Existing methods achieve the explicit modeling of frequency security constraints by simplifying the frequency response behavior of wind turbines. However, simplifications might lead to inaccuracy. To address this issue, this paper models the frequency response from wind turbines in detail and proposes a novel framework to construct the frequency security constraint for unit commitment (UC). First, the frequency security constraint is positioned at the segment that is effective for the dispatch decision instead of the whole boundary, which is unnecessary and complicated. Then, an analytical linear surrogate expression of the frequency security boundary is constructed through a data-driven approach. To ensure the accuracy of the surrogate constraint, a neighborhood sampling strategy is proposed to collect balanced samples. Furthermore, to reduce the linearization error of the surrogate constraints, supplementary constraints are added to restrict the width of the surrogate constraint. Finally, to address the modeling errors that may deviate from the frequency security requirements, a correction strategy is proposed. Case studies validate the proposed method and verify that it exceeds existing methods in the modeling accuracy of the power system frequency security.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133735"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency security constraint in unit commitment with detailed frequency response behavior of wind turbines\",\"authors\":\"Jianshu Yu,&nbsp;Pei Yong,&nbsp;Juan Yu,&nbsp;Zhifang Yang\",\"doi\":\"10.1016/j.energy.2024.133735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the high penetration of wind turbines, the necessity of incorporating frequency security considerations into power system scheduling rises. Existing methods achieve the explicit modeling of frequency security constraints by simplifying the frequency response behavior of wind turbines. However, simplifications might lead to inaccuracy. To address this issue, this paper models the frequency response from wind turbines in detail and proposes a novel framework to construct the frequency security constraint for unit commitment (UC). First, the frequency security constraint is positioned at the segment that is effective for the dispatch decision instead of the whole boundary, which is unnecessary and complicated. Then, an analytical linear surrogate expression of the frequency security boundary is constructed through a data-driven approach. To ensure the accuracy of the surrogate constraint, a neighborhood sampling strategy is proposed to collect balanced samples. Furthermore, to reduce the linearization error of the surrogate constraints, supplementary constraints are added to restrict the width of the surrogate constraint. Finally, to address the modeling errors that may deviate from the frequency security requirements, a correction strategy is proposed. Case studies validate the proposed method and verify that it exceeds existing methods in the modeling accuracy of the power system frequency security.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"313 \",\"pages\":\"Article 133735\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544224035138\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224035138","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着风力涡轮机的高渗透率,将频率安全因素纳入电力系统调度的必要性日益增加。现有方法通过简化风力涡轮机的频率响应行为来实现频率安全约束的显式建模。然而,简化可能会导致不准确。为解决这一问题,本文对风力发电机的频率响应进行了详细建模,并提出了一种新的框架来构建机组承诺(UC)的频率安全约束。首先,频率安全约束被定位在对调度决策有效的区段,而不是整个边界,这既不必要又复杂。然后,通过数据驱动法构建频率安全边界的解析线性代用表达式。为确保代约束的准确性,提出了一种邻域采样策略来收集均衡样本。此外,为了减少代用约束的线性化误差,还增加了补充约束来限制代用约束的宽度。最后,针对可能偏离频率安全要求的建模误差,提出了一种修正策略。案例研究验证了所提出的方法,并证明该方法在电力系统频率安全建模精度方面超过了现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency security constraint in unit commitment with detailed frequency response behavior of wind turbines
With the high penetration of wind turbines, the necessity of incorporating frequency security considerations into power system scheduling rises. Existing methods achieve the explicit modeling of frequency security constraints by simplifying the frequency response behavior of wind turbines. However, simplifications might lead to inaccuracy. To address this issue, this paper models the frequency response from wind turbines in detail and proposes a novel framework to construct the frequency security constraint for unit commitment (UC). First, the frequency security constraint is positioned at the segment that is effective for the dispatch decision instead of the whole boundary, which is unnecessary and complicated. Then, an analytical linear surrogate expression of the frequency security boundary is constructed through a data-driven approach. To ensure the accuracy of the surrogate constraint, a neighborhood sampling strategy is proposed to collect balanced samples. Furthermore, to reduce the linearization error of the surrogate constraints, supplementary constraints are added to restrict the width of the surrogate constraint. Finally, to address the modeling errors that may deviate from the frequency security requirements, a correction strategy is proposed. Case studies validate the proposed method and verify that it exceeds existing methods in the modeling accuracy of the power system frequency security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
期刊最新文献
Exploration on deep pulverized coal activation and ultra-low NOx emission strategies with novel purifying-combustion technology Collaborative strategy towards a resilient urban energy system: Evidence from a tripartite evolutionary game model Household, sociodemographic, building and land cover factors affecting residential summer electricity consumption: A systematic statistical study in Phoenix, AZ Economic benefits for the metallurgical industry from co-combusting pyrolysis gas from waste Assessment of flexible coal power and battery energy storage system in supporting renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1