基于离散事件模拟的树状区域供热网络动态热模拟

IF 9 1区 工程技术 Q1 ENERGY & FUELS Energy Pub Date : 2024-11-08 DOI:10.1016/j.energy.2024.133775
Zichan Xie , Haichao Wang , Pengmin Hua , Maximilian Björkstam , Risto Lahdelma
{"title":"基于离散事件模拟的树状区域供热网络动态热模拟","authors":"Zichan Xie ,&nbsp;Haichao Wang ,&nbsp;Pengmin Hua ,&nbsp;Maximilian Björkstam ,&nbsp;Risto Lahdelma","doi":"10.1016/j.energy.2024.133775","DOIUrl":null,"url":null,"abstract":"<div><div>The computational complexity involved in modelling district heating (DH) networks impedes the integration of network operations into comprehensive DH system studies. We developed a flexible, accurate, and fast dynamic thermal simulation model utilising discrete event simulation (DES). This model is versatile, suitable for any tree-shaped DH network with a central heating plant and can estimate node temperatures and calculate pipe heat losses. The speed of the model is improved via using variable time steps and by incorporating two advanced techniques: lazy evaluation and a customised priority queue. To further improve the computational speed, we developed a technique to eliminate redundant sampling points. This model was tested and demonstrated excellent consistency with actual measurements. Remarkably, reducing sampling points can speed up the simulation by a factor of three without compromising the temperature accuracy. A 72-day simulation of a network with 102 pipes was completed within 0.219 s. Our findings highlight the significant potential of the DES model for large-scale dynamic network simulations and offer a promising solution for DH network simulations and system optimisation.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133775"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic thermal simulation of a tree-shaped district heating network based on discrete event simulation\",\"authors\":\"Zichan Xie ,&nbsp;Haichao Wang ,&nbsp;Pengmin Hua ,&nbsp;Maximilian Björkstam ,&nbsp;Risto Lahdelma\",\"doi\":\"10.1016/j.energy.2024.133775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The computational complexity involved in modelling district heating (DH) networks impedes the integration of network operations into comprehensive DH system studies. We developed a flexible, accurate, and fast dynamic thermal simulation model utilising discrete event simulation (DES). This model is versatile, suitable for any tree-shaped DH network with a central heating plant and can estimate node temperatures and calculate pipe heat losses. The speed of the model is improved via using variable time steps and by incorporating two advanced techniques: lazy evaluation and a customised priority queue. To further improve the computational speed, we developed a technique to eliminate redundant sampling points. This model was tested and demonstrated excellent consistency with actual measurements. Remarkably, reducing sampling points can speed up the simulation by a factor of three without compromising the temperature accuracy. A 72-day simulation of a network with 102 pipes was completed within 0.219 s. Our findings highlight the significant potential of the DES model for large-scale dynamic network simulations and offer a promising solution for DH network simulations and system optimisation.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"313 \",\"pages\":\"Article 133775\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544224035539\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224035539","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

区域供热(DH)网络建模所涉及的计算复杂性阻碍了将网络运行纳入全面的 DH 系统研究。我们利用离散事件仿真(DES)开发了一种灵活、准确、快速的动态热仿真模型。该模型用途广泛,适用于任何带有集中供暖设备的树状 DH 网络,可估算节点温度并计算管道热损失。通过使用可变时间步长并结合两种先进技术:懒惰评估和定制优先队列,该模型的速度得到了提高。为了进一步提高计算速度,我们开发了一种消除冗余采样点的技术。经过测试,该模型与实际测量结果具有极佳的一致性。值得注意的是,在不影响温度精度的情况下,减少采样点可将模拟速度提高三倍。我们的研究结果凸显了 DES 模型在大规模动态网络模拟方面的巨大潜力,并为 DH 网络模拟和系统优化提供了一个前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic thermal simulation of a tree-shaped district heating network based on discrete event simulation
The computational complexity involved in modelling district heating (DH) networks impedes the integration of network operations into comprehensive DH system studies. We developed a flexible, accurate, and fast dynamic thermal simulation model utilising discrete event simulation (DES). This model is versatile, suitable for any tree-shaped DH network with a central heating plant and can estimate node temperatures and calculate pipe heat losses. The speed of the model is improved via using variable time steps and by incorporating two advanced techniques: lazy evaluation and a customised priority queue. To further improve the computational speed, we developed a technique to eliminate redundant sampling points. This model was tested and demonstrated excellent consistency with actual measurements. Remarkably, reducing sampling points can speed up the simulation by a factor of three without compromising the temperature accuracy. A 72-day simulation of a network with 102 pipes was completed within 0.219 s. Our findings highlight the significant potential of the DES model for large-scale dynamic network simulations and offer a promising solution for DH network simulations and system optimisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
期刊最新文献
High temperature heat pumps for industrial heating processes using water as refrigerant Exploration on deep pulverized coal activation and ultra-low NOx emission strategies with novel purifying-combustion technology Collaborative strategy towards a resilient urban energy system: Evidence from a tripartite evolutionary game model Household, sociodemographic, building and land cover factors affecting residential summer electricity consumption: A systematic statistical study in Phoenix, AZ Economic benefits for the metallurgical industry from co-combusting pyrolysis gas from waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1