从能源和经济数据中挖掘可解释的模糊 "如果-那么 "语言规则,预测中国各地区的二氧化碳排放量

IF 9 1区 工程技术 Q1 ENERGY & FUELS Energy Pub Date : 2024-11-05 DOI:10.1016/j.energy.2024.133631
Liting Deng , Yanyan Xu , Feng Xue , Zheng Pei
{"title":"从能源和经济数据中挖掘可解释的模糊 \"如果-那么 \"语言规则,预测中国各地区的二氧化碳排放量","authors":"Liting Deng ,&nbsp;Yanyan Xu ,&nbsp;Feng Xue ,&nbsp;Zheng Pei","doi":"10.1016/j.energy.2024.133631","DOIUrl":null,"url":null,"abstract":"<div><div>Forecasting CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emission is the one of most important issues for the “<span><math><mrow><mn>30</mn><mi>⋅</mi><mn>60</mn></mrow></math></span>” CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emission target in China. Due to unbalanced socio-economic developments of regions in China, exactly forecasting CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of provinces depend on their energy consumptions and economic developments. In the paper, a novel method based on <span><math><mi>K</mi></math></span>-means clustering method and computing with words is proposed to forecast CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of 30 provinces, which is consisted by (1) <span><math><mi>K</mi></math></span>-means clustering method is used to respectively cluster energy consumption and economic datasets of provinces and the interpretable fuzzy If-Then linguistic rules of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions are mined from the clusters; (2) computing with words method is utilized to transform fuzzy If-Then linguistic rules into fuzzy If-Then rules with membership functions on the universe of discourse; (3) a fuzzy inference method is adopted to forecast CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of 30 provinces. To show the usefulness and effectiveness of the novel method, energy consumptions and economic datasets of 30 provinces from 1997 to 2021 are employed to forecast CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions, metrics of MAE, MAPE, RMSE and the out-of-sample <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>o</mi><mi>o</mi><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> are utilized to evaluate CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emission forecasting of 30 provinces, means of them reach 13.304, 15.279, 0.081 and 0.965. By comparative analysis for forecasting CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of 30 provinces, means of MAE, MAPE, RMSE and the out-of-sample <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>o</mi><mi>o</mi><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> by the novel method are more than SVM, ANFIS and MLR methods. In addition, four kinds of mechanisms influencing CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> are discovered and analyzed by the fuzzy If-Then linguistic rules of 30 provinces, which can help to improve energy consumption and sustainable development of 30 provinces in China.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133631"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining interpretable fuzzy If-Then linguistic rules from energy and economic data to forecast CO2 emissions of regions in China\",\"authors\":\"Liting Deng ,&nbsp;Yanyan Xu ,&nbsp;Feng Xue ,&nbsp;Zheng Pei\",\"doi\":\"10.1016/j.energy.2024.133631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Forecasting CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emission is the one of most important issues for the “<span><math><mrow><mn>30</mn><mi>⋅</mi><mn>60</mn></mrow></math></span>” CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emission target in China. Due to unbalanced socio-economic developments of regions in China, exactly forecasting CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of provinces depend on their energy consumptions and economic developments. In the paper, a novel method based on <span><math><mi>K</mi></math></span>-means clustering method and computing with words is proposed to forecast CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of 30 provinces, which is consisted by (1) <span><math><mi>K</mi></math></span>-means clustering method is used to respectively cluster energy consumption and economic datasets of provinces and the interpretable fuzzy If-Then linguistic rules of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions are mined from the clusters; (2) computing with words method is utilized to transform fuzzy If-Then linguistic rules into fuzzy If-Then rules with membership functions on the universe of discourse; (3) a fuzzy inference method is adopted to forecast CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of 30 provinces. To show the usefulness and effectiveness of the novel method, energy consumptions and economic datasets of 30 provinces from 1997 to 2021 are employed to forecast CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions, metrics of MAE, MAPE, RMSE and the out-of-sample <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>o</mi><mi>o</mi><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> are utilized to evaluate CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emission forecasting of 30 provinces, means of them reach 13.304, 15.279, 0.081 and 0.965. By comparative analysis for forecasting CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of 30 provinces, means of MAE, MAPE, RMSE and the out-of-sample <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>o</mi><mi>o</mi><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> by the novel method are more than SVM, ANFIS and MLR methods. In addition, four kinds of mechanisms influencing CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> are discovered and analyzed by the fuzzy If-Then linguistic rules of 30 provinces, which can help to improve energy consumption and sustainable development of 30 provinces in China.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"313 \",\"pages\":\"Article 133631\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544224034091\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224034091","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳排放预测是中国实现 "30⋅60 "二氧化碳排放目标的最重要问题之一。由于中国各地区社会经济发展不平衡,准确预测各省的二氧化碳排放量取决于各省的能源消耗和经济发展状况。本文提出了一种基于 K-means 聚类方法和词计算的新型方法来预测 30 个省份的二氧化碳排放量,该方法包括:(1)使用 K-means 聚类方法分别对各省的能源消耗和经济数据集进行聚类,并从聚类中挖掘出可解释的二氧化碳排放量模糊 If-Then 语言规则;(3)采用模糊推理方法预测 30 个省份的二氧化碳排放量。为了证明新方法的实用性和有效性,采用了 30 个省份 1997 年至 2021 年的能源消耗和经济数据集来预测二氧化碳排放量,利用 MAE、MAPE、RMSE 和样本外 Roos2 等指标来评价 30 个省份的二氧化碳排放量预测,其均值分别为 13.304、15.279、0.081 和 0.965。通过对 30 个省份二氧化碳排放量预测的比较分析,新方法的 MAE、MAPE、RMSE 和样本外 Roos2 均值均高于 SVM、ANFIS 和 MLR 方法。此外,利用模糊 If-Then 语言规则发现并分析了 30 个省份的四种二氧化碳影响机制,有助于改善中国 30 个省份的能源消耗和可持续发展状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining interpretable fuzzy If-Then linguistic rules from energy and economic data to forecast CO2 emissions of regions in China
Forecasting CO2 emission is the one of most important issues for the “3060” CO2 emission target in China. Due to unbalanced socio-economic developments of regions in China, exactly forecasting CO2 emissions of provinces depend on their energy consumptions and economic developments. In the paper, a novel method based on K-means clustering method and computing with words is proposed to forecast CO2 emissions of 30 provinces, which is consisted by (1) K-means clustering method is used to respectively cluster energy consumption and economic datasets of provinces and the interpretable fuzzy If-Then linguistic rules of CO2 emissions are mined from the clusters; (2) computing with words method is utilized to transform fuzzy If-Then linguistic rules into fuzzy If-Then rules with membership functions on the universe of discourse; (3) a fuzzy inference method is adopted to forecast CO2 emissions of 30 provinces. To show the usefulness and effectiveness of the novel method, energy consumptions and economic datasets of 30 provinces from 1997 to 2021 are employed to forecast CO2 emissions, metrics of MAE, MAPE, RMSE and the out-of-sample Roos2 are utilized to evaluate CO2 emission forecasting of 30 provinces, means of them reach 13.304, 15.279, 0.081 and 0.965. By comparative analysis for forecasting CO2 emissions of 30 provinces, means of MAE, MAPE, RMSE and the out-of-sample Roos2 by the novel method are more than SVM, ANFIS and MLR methods. In addition, four kinds of mechanisms influencing CO2 are discovered and analyzed by the fuzzy If-Then linguistic rules of 30 provinces, which can help to improve energy consumption and sustainable development of 30 provinces in China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
期刊最新文献
Exploration on deep pulverized coal activation and ultra-low NOx emission strategies with novel purifying-combustion technology Collaborative strategy towards a resilient urban energy system: Evidence from a tripartite evolutionary game model Household, sociodemographic, building and land cover factors affecting residential summer electricity consumption: A systematic statistical study in Phoenix, AZ Economic benefits for the metallurgical industry from co-combusting pyrolysis gas from waste Assessment of flexible coal power and battery energy storage system in supporting renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1