基于生物电阻抗光谱的番茄成熟度检测

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Computers and Electronics in Agriculture Pub Date : 2024-11-12 DOI:10.1016/j.compag.2024.109553
Zhang Yongnian , Chen Yinhe , Bao Yihua , Wang Xiaochan , Xian Jieyu
{"title":"基于生物电阻抗光谱的番茄成熟度检测","authors":"Zhang Yongnian ,&nbsp;Chen Yinhe ,&nbsp;Bao Yihua ,&nbsp;Wang Xiaochan ,&nbsp;Xian Jieyu","doi":"10.1016/j.compag.2024.109553","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a method for detecting tomato maturity to address issues related to post-harvest storage and transportation. The method utilizes bioimpedance spectroscopy to study tomato maturity, construct the Double-R-Cole equivalent circuit model, and obtain electrical parameters through fitting the Levenberg-Marquardt optimization algorithm. We analyze the change rule of electrical parameters in different ripening periods, use Fisher’s discriminant to reduce the dimensionality of features such as biological variables, fitted electrical parameters, and storage days of tomato, and combine the advantages of support vector machine and random forest to classify the input features. The classification algorithm utilizes the gorilla troop optimization algorithm to address issues with traditional iterative algorithms, such as difficulty assigning initial values and susceptibility to local optima. The study finds that: the Levenberg-Marquardt algorithm fitted an R^2 mean value of 0.997 and the significance level of <em>p</em> &lt; 0.001 between the two constant-phase components of the fitted electrical parameters and the number of storage days proved that the established Double-R-Cole model could effectively characterize the postharvest situation of tomato; the Fisher’s discriminant based SVM-RF-GTO’s maturity classification algorithm achieves 97.26 % effectiveness in tomato maturity classification. This research provides valuable insights for tomato postharvest storage and transportation.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109553"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tomato maturity detection based on bioelectrical impedance spectroscopy\",\"authors\":\"Zhang Yongnian ,&nbsp;Chen Yinhe ,&nbsp;Bao Yihua ,&nbsp;Wang Xiaochan ,&nbsp;Xian Jieyu\",\"doi\":\"10.1016/j.compag.2024.109553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a method for detecting tomato maturity to address issues related to post-harvest storage and transportation. The method utilizes bioimpedance spectroscopy to study tomato maturity, construct the Double-R-Cole equivalent circuit model, and obtain electrical parameters through fitting the Levenberg-Marquardt optimization algorithm. We analyze the change rule of electrical parameters in different ripening periods, use Fisher’s discriminant to reduce the dimensionality of features such as biological variables, fitted electrical parameters, and storage days of tomato, and combine the advantages of support vector machine and random forest to classify the input features. The classification algorithm utilizes the gorilla troop optimization algorithm to address issues with traditional iterative algorithms, such as difficulty assigning initial values and susceptibility to local optima. The study finds that: the Levenberg-Marquardt algorithm fitted an R^2 mean value of 0.997 and the significance level of <em>p</em> &lt; 0.001 between the two constant-phase components of the fitted electrical parameters and the number of storage days proved that the established Double-R-Cole model could effectively characterize the postharvest situation of tomato; the Fisher’s discriminant based SVM-RF-GTO’s maturity classification algorithm achieves 97.26 % effectiveness in tomato maturity classification. This research provides valuable insights for tomato postharvest storage and transportation.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"227 \",\"pages\":\"Article 109553\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016816992400944X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016816992400944X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种检测番茄成熟度的方法,以解决与收获后贮藏和运输相关的问题。该方法利用生物阻抗光谱研究番茄成熟度,构建 Double-R-Cole 等效电路模型,并通过 Levenberg-Marquardt 优化算法拟合获得电参数。分析不同成熟期电参数的变化规律,利用费雪判别法降低番茄生物变量、拟合电参数、贮藏天数等特征的维度,并结合支持向量机和随机森林的优点对输入特征进行分类。分类算法采用了猩猩部队优化算法,以解决传统迭代算法存在的问题,如初始值分配困难和易出现局部最优等。研究发现:Levenberg-Marquardt 算法拟合的 R^2 均值为 0.997,拟合电参数的两个常相分量与贮藏天数之间的显著性水平为 p < 0.001,证明建立的 Double-R-Cole 模型能有效表征番茄采后情况;基于 Fisher 判别的 SVM-RF-GTO 成熟度分类算法在番茄成熟度分类中的有效性达到 97.26%。这项研究为番茄采后储运提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tomato maturity detection based on bioelectrical impedance spectroscopy
This paper proposes a method for detecting tomato maturity to address issues related to post-harvest storage and transportation. The method utilizes bioimpedance spectroscopy to study tomato maturity, construct the Double-R-Cole equivalent circuit model, and obtain electrical parameters through fitting the Levenberg-Marquardt optimization algorithm. We analyze the change rule of electrical parameters in different ripening periods, use Fisher’s discriminant to reduce the dimensionality of features such as biological variables, fitted electrical parameters, and storage days of tomato, and combine the advantages of support vector machine and random forest to classify the input features. The classification algorithm utilizes the gorilla troop optimization algorithm to address issues with traditional iterative algorithms, such as difficulty assigning initial values and susceptibility to local optima. The study finds that: the Levenberg-Marquardt algorithm fitted an R^2 mean value of 0.997 and the significance level of p < 0.001 between the two constant-phase components of the fitted electrical parameters and the number of storage days proved that the established Double-R-Cole model could effectively characterize the postharvest situation of tomato; the Fisher’s discriminant based SVM-RF-GTO’s maturity classification algorithm achieves 97.26 % effectiveness in tomato maturity classification. This research provides valuable insights for tomato postharvest storage and transportation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
期刊最新文献
Construction and validation of a mathematical model for the pressure subsidence of mixed crop straw in Shajiang black soil Fish feeding behavior recognition using time-domain and frequency-domain signals fusion from six-axis inertial sensors Estimation of crop leaf area index based on Sentinel-2 images and PROSAIL-Transformer coupling model Design, integration, and field evaluation of a selective harvesting robot for broccoli A Novel Behavior Detection Method for Sows and Piglets during Lactation Based on an Inspection Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1