利用大地遥感卫星观测数据监测长江中下游平原湖泊水体透明度(1984-2023 年)

IF 7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecological Indicators Pub Date : 2024-11-09 DOI:10.1016/j.ecolind.2024.112825
Miaomiao Chen , Fei Xiao , Zhou Wang , Yadong Zhou , Wangzheng Shen , Qi Feng , Enhua Li , Yun Du
{"title":"利用大地遥感卫星观测数据监测长江中下游平原湖泊水体透明度(1984-2023 年)","authors":"Miaomiao Chen ,&nbsp;Fei Xiao ,&nbsp;Zhou Wang ,&nbsp;Yadong Zhou ,&nbsp;Wangzheng Shen ,&nbsp;Qi Feng ,&nbsp;Enhua Li ,&nbsp;Yun Du","doi":"10.1016/j.ecolind.2024.112825","DOIUrl":null,"url":null,"abstract":"<div><div>Using the improved Quasi-Analytical Algorithm (QAA) and Landsat data, we documented the long-term changes in water clarity of the 17 largest lakes in the Middle-Lower Yangtze Plain from 1984 to 2023. A comprehensive dataset with over 4600 water clarity maps, reconstructed from 2511 Landsat series images, was compiled. The water clarity changes of these 17 lakes have a clear seasonal variation pattern, with the highest in summer and the lowest in winter. Over the past 40 years, water clarity of 59 % lakes shows a downward trend, with Junshan Lake showing the highest decrease rate of −0.0231 m/yr. 41 % lakes water clarity are showing an upward trend. From 1984 to 1990, the highest average <span><math><msub><mi>Z</mi><mrow><mi>SD</mi></mrow></msub></math></span> (Secchi disk depth) values were recorded in Changhu Lake, Junshan Lake, Honghu Lake, Futou Lake, and Gehu Lake. These lakes, however, experienced the most significant declines compared to period from 2021 to 2023. Chaohu Lake, Taihu Lake, Caizi Lake, and Nanyi Lake, which had the lowest average <span><math><msub><mi>Z</mi><mrow><mi>SD</mi></mrow></msub></math></span> during 1984–1990, showed the most substantial increases. Analyzing the monthly distribution of water level and <span><math><msub><mi>Z</mi><mrow><mi>SD</mi></mrow></msub></math></span> data reveals that water clarity exhibits different seasonal variations in relation to water levels. The comprehensive dataset and analysis provide a crucial scientific basis for informed water resource management and policy-making in the region.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112825"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring water clarity of lakes in the Middle-Lower Yangtze Plain using Landsat observations (1984–2023)\",\"authors\":\"Miaomiao Chen ,&nbsp;Fei Xiao ,&nbsp;Zhou Wang ,&nbsp;Yadong Zhou ,&nbsp;Wangzheng Shen ,&nbsp;Qi Feng ,&nbsp;Enhua Li ,&nbsp;Yun Du\",\"doi\":\"10.1016/j.ecolind.2024.112825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using the improved Quasi-Analytical Algorithm (QAA) and Landsat data, we documented the long-term changes in water clarity of the 17 largest lakes in the Middle-Lower Yangtze Plain from 1984 to 2023. A comprehensive dataset with over 4600 water clarity maps, reconstructed from 2511 Landsat series images, was compiled. The water clarity changes of these 17 lakes have a clear seasonal variation pattern, with the highest in summer and the lowest in winter. Over the past 40 years, water clarity of 59 % lakes shows a downward trend, with Junshan Lake showing the highest decrease rate of −0.0231 m/yr. 41 % lakes water clarity are showing an upward trend. From 1984 to 1990, the highest average <span><math><msub><mi>Z</mi><mrow><mi>SD</mi></mrow></msub></math></span> (Secchi disk depth) values were recorded in Changhu Lake, Junshan Lake, Honghu Lake, Futou Lake, and Gehu Lake. These lakes, however, experienced the most significant declines compared to period from 2021 to 2023. Chaohu Lake, Taihu Lake, Caizi Lake, and Nanyi Lake, which had the lowest average <span><math><msub><mi>Z</mi><mrow><mi>SD</mi></mrow></msub></math></span> during 1984–1990, showed the most substantial increases. Analyzing the monthly distribution of water level and <span><math><msub><mi>Z</mi><mrow><mi>SD</mi></mrow></msub></math></span> data reveals that water clarity exhibits different seasonal variations in relation to water levels. The comprehensive dataset and analysis provide a crucial scientific basis for informed water resource management and policy-making in the region.</div></div>\",\"PeriodicalId\":11459,\"journal\":{\"name\":\"Ecological Indicators\",\"volume\":\"169 \",\"pages\":\"Article 112825\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Indicators\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1470160X24012822\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24012822","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用改进的准分析算法(QAA)和陆地卫星数据,我们记录了长江中下游平原 17 个最大湖泊从 1984 年到 2023 年水体透明度的长期变化。根据 2511 幅 Landsat 系列图像重建的 4600 多张水体透明度图组成了一个综合数据集。这 17 个湖泊的水体透明度变化具有明显的季节性变化规律,夏季最高,冬季最低。近 40 年来,59% 的湖泊水体透明度呈下降趋势,其中君山湖下降幅度最大,为-0.0231 米/年。41%的湖泊水体透明度呈上升趋势。从 1984 年到 1990 年,长湖、军山湖、洪湖、埠头湖和鹅湖的 ZSD(塞奇盘深度)平均值最高。然而,与 2021 年至 2023 年期间相比,这些湖泊的降幅最为明显。1984-1990 年间平均 ZSD 最低的巢湖、太湖、菜子湖和南漪湖则出现了最大幅度的上升。通过分析水位和 ZSD 数据的月度分布,可以发现水体透明度与水位呈现出不同的季节性变化。综合数据集和分析为该地区的水资源管理和决策提供了重要的科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring water clarity of lakes in the Middle-Lower Yangtze Plain using Landsat observations (1984–2023)
Using the improved Quasi-Analytical Algorithm (QAA) and Landsat data, we documented the long-term changes in water clarity of the 17 largest lakes in the Middle-Lower Yangtze Plain from 1984 to 2023. A comprehensive dataset with over 4600 water clarity maps, reconstructed from 2511 Landsat series images, was compiled. The water clarity changes of these 17 lakes have a clear seasonal variation pattern, with the highest in summer and the lowest in winter. Over the past 40 years, water clarity of 59 % lakes shows a downward trend, with Junshan Lake showing the highest decrease rate of −0.0231 m/yr. 41 % lakes water clarity are showing an upward trend. From 1984 to 1990, the highest average ZSD (Secchi disk depth) values were recorded in Changhu Lake, Junshan Lake, Honghu Lake, Futou Lake, and Gehu Lake. These lakes, however, experienced the most significant declines compared to period from 2021 to 2023. Chaohu Lake, Taihu Lake, Caizi Lake, and Nanyi Lake, which had the lowest average ZSD during 1984–1990, showed the most substantial increases. Analyzing the monthly distribution of water level and ZSD data reveals that water clarity exhibits different seasonal variations in relation to water levels. The comprehensive dataset and analysis provide a crucial scientific basis for informed water resource management and policy-making in the region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Indicators
Ecological Indicators 环境科学-环境科学
CiteScore
11.80
自引率
8.70%
发文量
1163
审稿时长
78 days
期刊介绍: The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published. • All aspects of ecological and environmental indicators and indices. • New indicators, and new approaches and methods for indicator development, testing and use. • Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources. • Analysis and research of resource, system- and scale-specific indicators. • Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs. • How research indicators can be transformed into direct application for management purposes. • Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators. • Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.
期刊最新文献
Urban forest indicator assessment for nature-based solutions to connect biodiversity and people Drivers of prehistoric cultural evolution in the Chengdu Plain: Fire events and environmental changes during the middle and late Holocene A novel integrated socio-ecological-economic index for assessing heat health risk Long-term water quality dynamics and trend assessment reveal the effectiveness of ecological compensation: Insights from China’s first cross-provincial compensation watershed Tracking ecosystem stability across boreal Siberia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1