Jianmin Qiao , Qin Zhang , Jing Shao , Qian Cao , Haimeng Liu , Furong Lv
{"title":"中国水资源压力的时空变化及其驱动因素:多尺度分析","authors":"Jianmin Qiao , Qin Zhang , Jing Shao , Qian Cao , Haimeng Liu , Furong Lv","doi":"10.1016/j.ecolind.2024.112820","DOIUrl":null,"url":null,"abstract":"<div><div>Water resources are fundamental for sustaining natural ecosystems and human activities, playing a critical role in the sustainable development of the regional environment. Under the dual pressures of human activities and climate change, however, the stress on water resources has become increasingly evident, emerging as one of the greatest global risks for the next decade. In this study, by applying the water stress index, Lorenz curve, and Theil index, we explored the spatiotemporal patterns and inequality distribution characteristics of water resource stress across two scales: catchment and basin. Additionally, we used partial least squares regression to identify the key factors influencing water resource stress. The results indicated significant regional variations in water stress across China during 2002 to 2020. At the catchment scale, areas with a water stress index greater than 0.4 were distributed in the eastern, northeastern and northwestern regions. While at the basin scale, a north–south pattern emerged with lower stress in the south and higher stress in the north. The Haihe and Huaihe river basins exhibited the highest water stress. The Lorenz curve deviated significantly from the line of absolute equality, indicating a high degree of inequality in regional water resource stress. The Theil index increased from 1.26 to 1.50, showing a slight upward trend in inequality. Analysis of the driving factors revealed that the Yellow River Basin was primarily influenced by GDP and population, the Songhua River Basin was affected by population and urban land use, and the Southwest River Basin is driven mainly by vegetation cover. Overall, precipitation was the most critical driver affecting water stress, predominantly exerting a negative influence. This study provides a theoretical basis for alleviating regional water stress and offers valuable insights for the scientific planning and management of water resources.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112820"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial and temporal variation of water stress in China and its driving factors: A multi-scale analysis\",\"authors\":\"Jianmin Qiao , Qin Zhang , Jing Shao , Qian Cao , Haimeng Liu , Furong Lv\",\"doi\":\"10.1016/j.ecolind.2024.112820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water resources are fundamental for sustaining natural ecosystems and human activities, playing a critical role in the sustainable development of the regional environment. Under the dual pressures of human activities and climate change, however, the stress on water resources has become increasingly evident, emerging as one of the greatest global risks for the next decade. In this study, by applying the water stress index, Lorenz curve, and Theil index, we explored the spatiotemporal patterns and inequality distribution characteristics of water resource stress across two scales: catchment and basin. Additionally, we used partial least squares regression to identify the key factors influencing water resource stress. The results indicated significant regional variations in water stress across China during 2002 to 2020. At the catchment scale, areas with a water stress index greater than 0.4 were distributed in the eastern, northeastern and northwestern regions. While at the basin scale, a north–south pattern emerged with lower stress in the south and higher stress in the north. The Haihe and Huaihe river basins exhibited the highest water stress. The Lorenz curve deviated significantly from the line of absolute equality, indicating a high degree of inequality in regional water resource stress. The Theil index increased from 1.26 to 1.50, showing a slight upward trend in inequality. Analysis of the driving factors revealed that the Yellow River Basin was primarily influenced by GDP and population, the Songhua River Basin was affected by population and urban land use, and the Southwest River Basin is driven mainly by vegetation cover. Overall, precipitation was the most critical driver affecting water stress, predominantly exerting a negative influence. This study provides a theoretical basis for alleviating regional water stress and offers valuable insights for the scientific planning and management of water resources.</div></div>\",\"PeriodicalId\":11459,\"journal\":{\"name\":\"Ecological Indicators\",\"volume\":\"169 \",\"pages\":\"Article 112820\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Indicators\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1470160X24012779\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24012779","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Spatial and temporal variation of water stress in China and its driving factors: A multi-scale analysis
Water resources are fundamental for sustaining natural ecosystems and human activities, playing a critical role in the sustainable development of the regional environment. Under the dual pressures of human activities and climate change, however, the stress on water resources has become increasingly evident, emerging as one of the greatest global risks for the next decade. In this study, by applying the water stress index, Lorenz curve, and Theil index, we explored the spatiotemporal patterns and inequality distribution characteristics of water resource stress across two scales: catchment and basin. Additionally, we used partial least squares regression to identify the key factors influencing water resource stress. The results indicated significant regional variations in water stress across China during 2002 to 2020. At the catchment scale, areas with a water stress index greater than 0.4 were distributed in the eastern, northeastern and northwestern regions. While at the basin scale, a north–south pattern emerged with lower stress in the south and higher stress in the north. The Haihe and Huaihe river basins exhibited the highest water stress. The Lorenz curve deviated significantly from the line of absolute equality, indicating a high degree of inequality in regional water resource stress. The Theil index increased from 1.26 to 1.50, showing a slight upward trend in inequality. Analysis of the driving factors revealed that the Yellow River Basin was primarily influenced by GDP and population, the Songhua River Basin was affected by population and urban land use, and the Southwest River Basin is driven mainly by vegetation cover. Overall, precipitation was the most critical driver affecting water stress, predominantly exerting a negative influence. This study provides a theoretical basis for alleviating regional water stress and offers valuable insights for the scientific planning and management of water resources.
期刊介绍:
The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published.
• All aspects of ecological and environmental indicators and indices.
• New indicators, and new approaches and methods for indicator development, testing and use.
• Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources.
• Analysis and research of resource, system- and scale-specific indicators.
• Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs.
• How research indicators can be transformed into direct application for management purposes.
• Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators.
• Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.