{"title":"设计基于柔性聚酰亚胺的蛇形肌电图传感器,用于人工智能建筑疲劳检测","authors":"Yogesh Gautam, Houtan Jebelli","doi":"10.1016/j.sbsr.2024.100713","DOIUrl":null,"url":null,"abstract":"<div><div>Physical fatigue and musculoskeletal disorders are critical health issues for construction workers, stemming from repetitive motions, heavy lifting, and awkward postures. These factors compromise worker well-being, productivity, and safety while increasing the risk of accidents and long-term health problems. Recent advancements in wearable health monitoring technology offer potential solutions, but current sensors encounter significant challenges in the dynamic construction environment. These include inadequate skin contact, increased contact impedance, and vulnerability to motion artifacts all of which degrade signal quality and reduce the accuracy of fatigue detection. This paper develops a fractal-based, flexible sensor for enhanced adaptability and accurate fatigue estimation. Finite element analysis compared five space-filling designs, with the serpentine curve exhibiting the highest contact area and lowest strain, making it the preferred choice for fabrication. Evaluations demonstrated significant improvements in signal-to-noise ratio (SNR) and motion artifact reduction, with the newly developed sensor achieving a 37 % to 59 % SNR improvement over commercial electrodes across different muscle groups. The developed flexible sensor was integrated with a fatigue-detecting framework based on a vision transformer model which provided an average accuracy of 87 % for fatigue detection. The developed sensor significantly enhances EMG signal quality and reliability, promising improved health monitoring and safety for construction workers.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100713"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of flexible polyimide-based serpentine EMG sensor for AI-enabled fatigue detection in construction\",\"authors\":\"Yogesh Gautam, Houtan Jebelli\",\"doi\":\"10.1016/j.sbsr.2024.100713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Physical fatigue and musculoskeletal disorders are critical health issues for construction workers, stemming from repetitive motions, heavy lifting, and awkward postures. These factors compromise worker well-being, productivity, and safety while increasing the risk of accidents and long-term health problems. Recent advancements in wearable health monitoring technology offer potential solutions, but current sensors encounter significant challenges in the dynamic construction environment. These include inadequate skin contact, increased contact impedance, and vulnerability to motion artifacts all of which degrade signal quality and reduce the accuracy of fatigue detection. This paper develops a fractal-based, flexible sensor for enhanced adaptability and accurate fatigue estimation. Finite element analysis compared five space-filling designs, with the serpentine curve exhibiting the highest contact area and lowest strain, making it the preferred choice for fabrication. Evaluations demonstrated significant improvements in signal-to-noise ratio (SNR) and motion artifact reduction, with the newly developed sensor achieving a 37 % to 59 % SNR improvement over commercial electrodes across different muscle groups. The developed flexible sensor was integrated with a fatigue-detecting framework based on a vision transformer model which provided an average accuracy of 87 % for fatigue detection. The developed sensor significantly enhances EMG signal quality and reliability, promising improved health monitoring and safety for construction workers.</div></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"46 \",\"pages\":\"Article 100713\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Design of flexible polyimide-based serpentine EMG sensor for AI-enabled fatigue detection in construction
Physical fatigue and musculoskeletal disorders are critical health issues for construction workers, stemming from repetitive motions, heavy lifting, and awkward postures. These factors compromise worker well-being, productivity, and safety while increasing the risk of accidents and long-term health problems. Recent advancements in wearable health monitoring technology offer potential solutions, but current sensors encounter significant challenges in the dynamic construction environment. These include inadequate skin contact, increased contact impedance, and vulnerability to motion artifacts all of which degrade signal quality and reduce the accuracy of fatigue detection. This paper develops a fractal-based, flexible sensor for enhanced adaptability and accurate fatigue estimation. Finite element analysis compared five space-filling designs, with the serpentine curve exhibiting the highest contact area and lowest strain, making it the preferred choice for fabrication. Evaluations demonstrated significant improvements in signal-to-noise ratio (SNR) and motion artifact reduction, with the newly developed sensor achieving a 37 % to 59 % SNR improvement over commercial electrodes across different muscle groups. The developed flexible sensor was integrated with a fatigue-detecting framework based on a vision transformer model which provided an average accuracy of 87 % for fatigue detection. The developed sensor significantly enhances EMG signal quality and reliability, promising improved health monitoring and safety for construction workers.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.