一步法聚乙烯醇/聚丙烯酰胺/聚丙烯酸/二甲基亚砜/CaCl2 混合水凝胶,用于可穿戴应变传感器的抗疲劳、抗冻和抗脱水功能

IF 5.8 2区 化学 Q1 POLYMER SCIENCE European Polymer Journal Pub Date : 2024-11-10 DOI:10.1016/j.eurpolymj.2024.113573
Xiangqian Fan , Liyong Wang , Shaomin Bai , Huiqi Wang , Xingcheng Zhu , Lei Liu , Ning Li , Chaorui Xue , Shengliang Hu
{"title":"一步法聚乙烯醇/聚丙烯酰胺/聚丙烯酸/二甲基亚砜/CaCl2 混合水凝胶,用于可穿戴应变传感器的抗疲劳、抗冻和抗脱水功能","authors":"Xiangqian Fan ,&nbsp;Liyong Wang ,&nbsp;Shaomin Bai ,&nbsp;Huiqi Wang ,&nbsp;Xingcheng Zhu ,&nbsp;Lei Liu ,&nbsp;Ning Li ,&nbsp;Chaorui Xue ,&nbsp;Shengliang Hu","doi":"10.1016/j.eurpolymj.2024.113573","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogel with fatigue resistance, freezing tolerant and dehydration resistance are peculiarly attractive in strain sensors. The hydrogel soaked in organic solvent is an effective strategy to improve freezing resistance and dehydration resistance, while this may result in poor conductivity. Moreover, ion-incorporation is considered to be the most feasible method for solving above concern, while high concentration of salt ions will result in weak mechanical properties. Therefore, the facile preparation of anti-freezing and anti-dehydration hydrogels with excellent fatigue resistance remains a challenge. Herein, a polyvinyl alcohol/polyacrylamide/polyacrylic acid/dimethyl sulfoxide/CaCl<sub>2</sub> hybrid hydrogel was designed and fabricated through a facile one-step method to balance a variety of outstanding properties. On account of the hybridization design of multi-materials, the hybrid hydrogel exhibited high ionic conductivity (∼0.2 S/m), strength (∼0.36 MPa) and stretchability (∼825 %). Meanwhile, the hybrid hydrogel demonstrated prominent freezing resistance, dehydration resistance and fatigue resistance. The mechanical properties almost no deterioration after 1000 stretching cycle at 100 % strain, exposure to environment for 30 days or freeze at low temperature. Besides, the hybrid hydrogel-based stain sensor showed a linear sensitivity (GF = 1.12 over 0–400 % strain), quickly responsivity (200 ms), and could monitor various human activities steadily, demonstrating distinguished potential for use in wearable health monitoring and flexible electric skins.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"221 ","pages":"Article 113573"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A one-step polyvinyl alcohol/polyacrylamide/polyacrylic acid/dimethyl sulfoxide/CaCl2 hybrid hydrogel enabling anti-fatigue, anti-freeze and anti-dehydration for wearable strain sensor\",\"authors\":\"Xiangqian Fan ,&nbsp;Liyong Wang ,&nbsp;Shaomin Bai ,&nbsp;Huiqi Wang ,&nbsp;Xingcheng Zhu ,&nbsp;Lei Liu ,&nbsp;Ning Li ,&nbsp;Chaorui Xue ,&nbsp;Shengliang Hu\",\"doi\":\"10.1016/j.eurpolymj.2024.113573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogel with fatigue resistance, freezing tolerant and dehydration resistance are peculiarly attractive in strain sensors. The hydrogel soaked in organic solvent is an effective strategy to improve freezing resistance and dehydration resistance, while this may result in poor conductivity. Moreover, ion-incorporation is considered to be the most feasible method for solving above concern, while high concentration of salt ions will result in weak mechanical properties. Therefore, the facile preparation of anti-freezing and anti-dehydration hydrogels with excellent fatigue resistance remains a challenge. Herein, a polyvinyl alcohol/polyacrylamide/polyacrylic acid/dimethyl sulfoxide/CaCl<sub>2</sub> hybrid hydrogel was designed and fabricated through a facile one-step method to balance a variety of outstanding properties. On account of the hybridization design of multi-materials, the hybrid hydrogel exhibited high ionic conductivity (∼0.2 S/m), strength (∼0.36 MPa) and stretchability (∼825 %). Meanwhile, the hybrid hydrogel demonstrated prominent freezing resistance, dehydration resistance and fatigue resistance. The mechanical properties almost no deterioration after 1000 stretching cycle at 100 % strain, exposure to environment for 30 days or freeze at low temperature. Besides, the hybrid hydrogel-based stain sensor showed a linear sensitivity (GF = 1.12 over 0–400 % strain), quickly responsivity (200 ms), and could monitor various human activities steadily, demonstrating distinguished potential for use in wearable health monitoring and flexible electric skins.</div></div>\",\"PeriodicalId\":315,\"journal\":{\"name\":\"European Polymer Journal\",\"volume\":\"221 \",\"pages\":\"Article 113573\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014305724008346\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724008346","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在应变传感器中,抗疲劳、耐冷冻和耐脱水的水凝胶具有独特的吸引力。将水凝胶浸泡在有机溶剂中是提高抗冻性和抗脱水性的有效方法,但这可能会导致导电性变差。此外,离子注入被认为是解决上述问题的最可行方法,但高浓度的盐离子会导致机械性能减弱。因此,如何简便地制备出抗冻、抗脱水且具有优异抗疲劳性能的水凝胶仍是一项挑战。本文设计了一种聚乙烯醇/聚丙烯酰胺/聚丙烯酸/二甲基亚砜/CaCl2杂化水凝胶,并通过简便的一步法制备出了兼顾多种优异性能的水凝胶。由于多种材料的杂化设计,该杂化水凝胶具有较高的离子电导率(∼0.2 S/m)、强度(∼0.36 MPa)和拉伸性(∼825 %)。同时,混合水凝胶还具有突出的抗冻性、抗脱水性和抗疲劳性。在应变为 100 % 的情况下拉伸 1000 次、暴露于环境中 30 天或低温冷冻后,其机械性能几乎没有下降。此外,基于混合水凝胶的染色传感器显示出线性灵敏度(0-400 % 应变范围内的 GF = 1.12)和快速响应性(200 毫秒),可以稳定地监测人体的各种活动,在可穿戴健康监测和柔性电动皮肤方面具有显著的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A one-step polyvinyl alcohol/polyacrylamide/polyacrylic acid/dimethyl sulfoxide/CaCl2 hybrid hydrogel enabling anti-fatigue, anti-freeze and anti-dehydration for wearable strain sensor
Hydrogel with fatigue resistance, freezing tolerant and dehydration resistance are peculiarly attractive in strain sensors. The hydrogel soaked in organic solvent is an effective strategy to improve freezing resistance and dehydration resistance, while this may result in poor conductivity. Moreover, ion-incorporation is considered to be the most feasible method for solving above concern, while high concentration of salt ions will result in weak mechanical properties. Therefore, the facile preparation of anti-freezing and anti-dehydration hydrogels with excellent fatigue resistance remains a challenge. Herein, a polyvinyl alcohol/polyacrylamide/polyacrylic acid/dimethyl sulfoxide/CaCl2 hybrid hydrogel was designed and fabricated through a facile one-step method to balance a variety of outstanding properties. On account of the hybridization design of multi-materials, the hybrid hydrogel exhibited high ionic conductivity (∼0.2 S/m), strength (∼0.36 MPa) and stretchability (∼825 %). Meanwhile, the hybrid hydrogel demonstrated prominent freezing resistance, dehydration resistance and fatigue resistance. The mechanical properties almost no deterioration after 1000 stretching cycle at 100 % strain, exposure to environment for 30 days or freeze at low temperature. Besides, the hybrid hydrogel-based stain sensor showed a linear sensitivity (GF = 1.12 over 0–400 % strain), quickly responsivity (200 ms), and could monitor various human activities steadily, demonstrating distinguished potential for use in wearable health monitoring and flexible electric skins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Polymer Journal
European Polymer Journal 化学-高分子科学
CiteScore
9.90
自引率
10.00%
发文量
691
审稿时长
23 days
期刊介绍: European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas: Polymer synthesis and functionalization • Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers. Stimuli-responsive polymers • Including shape memory and self-healing polymers. Supramolecular polymers and self-assembly • Molecular recognition and higher order polymer structures. Renewable and sustainable polymers • Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites. Polymers at interfaces and surfaces • Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications. Biomedical applications and nanomedicine • Polymers for regenerative medicine, drug delivery molecular release and gene therapy The scope of European Polymer Journal no longer includes Polymer Physics.
期刊最新文献
Versatile organosilicone porous materials for the detection of nitroaromatics and the visualization of fingerprints Preparation of free radical/cationic hybrid UV-cured silicone materials with reducing oxygen inhibition via silyl radicals Development of organosoluble, quaternized and naproxen sodium- loaded poly(vinyl alcohol)-based electrospun nanofibers Soluble polyimides with ultralow dielectric constant and dielectric loss and high colorless transparency based on spirobisindane-bis (aryl ester) diamines Mechanoresponsive self-reinforcement composite hydrogels with triple-network structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1