Soluble polyimides with ultralow dielectric constant and dielectric loss and high colorless transparency based on spirobisindane-bis (aryl ester) diamines
{"title":"Soluble polyimides with ultralow dielectric constant and dielectric loss and high colorless transparency based on spirobisindane-bis (aryl ester) diamines","authors":"Peng Xiao , Xiaojie He , Feng Zheng , Qinghua Lu","doi":"10.1016/j.eurpolymj.2024.113580","DOIUrl":null,"url":null,"abstract":"<div><div>With the emergence of 5G technology, the traditional polyimide with a relatively high dielectric constant (<em>D</em><sub>k</sub>) and dielectric loss (<em>D</em><sub>f</sub>) are not suitable the requirements of ultra-high transmission and ultra-low loss. In particular, reducing the <em>D</em><sub>f</sub> value of polyimide has become a significant difficulty in science and engineering. Herein, an elaborate design was proposed for the preparation of polyimide with both low <em>D</em><sub>k</sub> and low <em>D</em><sub>f</sub>, based on a pair of diamine isomer containing two esters and a spiro-bis-indene structure (<em>p</em>-SBI2EA and <em>m</em>-SBI2EA), and their polymerization with 4,4′-(Hexafluoroisopropylidene)diphthalic anhydride (6FDA). The resultant polyimide films showed an exceptional dielectric property, with <em>D</em><sub>k</sub> values of 2.83 and 2.88, and <em>D</em><sub>f</sub> values of 0.0043 and 0.0048 for <em>p</em>-SBI2EA-6FDA and <em>m</em>-SBI2EA-6FDA, respectively, at high frequencies (40 GHz). Interestingly, introducing the spirobisindane structure significantly displayed preeminent solubility in both high-boiling-point and low-boiling-point solvents. Furthermore, the PI films exhibited perfect optical performance, with cutoff wavelengths (<em>λ</em><sub>cut-off</sub>) of 315 and 321 nm, transmittance exceeding 86 % and 89 % at 450 nm, and yellowing indices (YI) as low as 1.72 and 1.63, respectively. The features of the PIs render them auspicious candidate materials for applications in 5G high frequency communication and optical fields.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"221 ","pages":"Article 113580"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724008413","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the emergence of 5G technology, the traditional polyimide with a relatively high dielectric constant (Dk) and dielectric loss (Df) are not suitable the requirements of ultra-high transmission and ultra-low loss. In particular, reducing the Df value of polyimide has become a significant difficulty in science and engineering. Herein, an elaborate design was proposed for the preparation of polyimide with both low Dk and low Df, based on a pair of diamine isomer containing two esters and a spiro-bis-indene structure (p-SBI2EA and m-SBI2EA), and their polymerization with 4,4′-(Hexafluoroisopropylidene)diphthalic anhydride (6FDA). The resultant polyimide films showed an exceptional dielectric property, with Dk values of 2.83 and 2.88, and Df values of 0.0043 and 0.0048 for p-SBI2EA-6FDA and m-SBI2EA-6FDA, respectively, at high frequencies (40 GHz). Interestingly, introducing the spirobisindane structure significantly displayed preeminent solubility in both high-boiling-point and low-boiling-point solvents. Furthermore, the PI films exhibited perfect optical performance, with cutoff wavelengths (λcut-off) of 315 and 321 nm, transmittance exceeding 86 % and 89 % at 450 nm, and yellowing indices (YI) as low as 1.72 and 1.63, respectively. The features of the PIs render them auspicious candidate materials for applications in 5G high frequency communication and optical fields.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.