射频电容耦合 Ar+H2 等离子体在铜基光伏栅线快速退火中的应用

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-11-09 DOI:10.1016/j.solmat.2024.113287
Jiawei Zhang , Jiamin Huang , Lei Huang , Zhaoyang Zhou , Yi He , Xue Liu , Feng Wang , Xiaoping Ma , Yu Xin
{"title":"射频电容耦合 Ar+H2 等离子体在铜基光伏栅线快速退火中的应用","authors":"Jiawei Zhang ,&nbsp;Jiamin Huang ,&nbsp;Lei Huang ,&nbsp;Zhaoyang Zhou ,&nbsp;Yi He ,&nbsp;Xue Liu ,&nbsp;Feng Wang ,&nbsp;Xiaoping Ma ,&nbsp;Yu Xin","doi":"10.1016/j.solmat.2024.113287","DOIUrl":null,"url":null,"abstract":"<div><div>With the continuous thinning of photovoltaic silicon wafers for cost reduction, copper based photovoltaic grid lines (Cu-PGL) require annealing and softening treatment. However, for the commonly used short circuit annealing method in industry, some issues exist such as air surface oxidation and environmental pollution, which need to be addressed for large-scale development of high-performance Cu-PGL. In this study, we propose a medium-pressure capacitively coupled plasma driven by radio frequency (RF) for plasma rapid annealing of Cu-PGL to meet solar cell performance requirements. The experimental results show that the yield strength of Cu-PGL decreases from 336.5 MPa to 59 MPa after plasma rapid annealing while electrical conductivity increases from 87 %IACS (International Annealed Copper Standard) to 116 %IACS at the optimal condition of discharge pressure of 1.0 kPa, and input power of 150 W with wire speed of 50 m/min. The plasma annealing mechanism of Cu wire was disclosed by combining spectral diagnosis of the plasma and Cu wire performance characterization.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"279 ","pages":"Article 113287"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of radio frequency capacitively coupled Ar+H2 plasma on rapid annealing of Cu-based photovoltaic grid line\",\"authors\":\"Jiawei Zhang ,&nbsp;Jiamin Huang ,&nbsp;Lei Huang ,&nbsp;Zhaoyang Zhou ,&nbsp;Yi He ,&nbsp;Xue Liu ,&nbsp;Feng Wang ,&nbsp;Xiaoping Ma ,&nbsp;Yu Xin\",\"doi\":\"10.1016/j.solmat.2024.113287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the continuous thinning of photovoltaic silicon wafers for cost reduction, copper based photovoltaic grid lines (Cu-PGL) require annealing and softening treatment. However, for the commonly used short circuit annealing method in industry, some issues exist such as air surface oxidation and environmental pollution, which need to be addressed for large-scale development of high-performance Cu-PGL. In this study, we propose a medium-pressure capacitively coupled plasma driven by radio frequency (RF) for plasma rapid annealing of Cu-PGL to meet solar cell performance requirements. The experimental results show that the yield strength of Cu-PGL decreases from 336.5 MPa to 59 MPa after plasma rapid annealing while electrical conductivity increases from 87 %IACS (International Annealed Copper Standard) to 116 %IACS at the optimal condition of discharge pressure of 1.0 kPa, and input power of 150 W with wire speed of 50 m/min. The plasma annealing mechanism of Cu wire was disclosed by combining spectral diagnosis of the plasma and Cu wire performance characterization.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"279 \",\"pages\":\"Article 113287\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005993\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005993","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着光伏硅片不断减薄以降低成本,铜基光伏栅线(Cu-PGL)需要进行退火和软化处理。然而,工业上常用的短路退火法存在空气表面氧化和环境污染等问题,需要解决这些问题才能大规模开发高性能铜栅极线。在本研究中,我们提出了一种由射频(RF)驱动的中压电容耦合等离子体,用于等离子体快速退火 Cu-PGL,以满足太阳能电池的性能要求。实验结果表明,在放电压力为 1.0 kPa、输入功率为 150 W、线速度为 50 m/min 的最佳条件下,等离子体快速退火后,Cu-PGL 的屈服强度从 336.5 MPa 下降到 59 MPa,而导电率则从 87 %IACS(国际退火铜标准)提高到 116 %IACS。通过结合等离子体光谱诊断和铜线性能表征,揭示了铜线的等离子体退火机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of radio frequency capacitively coupled Ar+H2 plasma on rapid annealing of Cu-based photovoltaic grid line
With the continuous thinning of photovoltaic silicon wafers for cost reduction, copper based photovoltaic grid lines (Cu-PGL) require annealing and softening treatment. However, for the commonly used short circuit annealing method in industry, some issues exist such as air surface oxidation and environmental pollution, which need to be addressed for large-scale development of high-performance Cu-PGL. In this study, we propose a medium-pressure capacitively coupled plasma driven by radio frequency (RF) for plasma rapid annealing of Cu-PGL to meet solar cell performance requirements. The experimental results show that the yield strength of Cu-PGL decreases from 336.5 MPa to 59 MPa after plasma rapid annealing while electrical conductivity increases from 87 %IACS (International Annealed Copper Standard) to 116 %IACS at the optimal condition of discharge pressure of 1.0 kPa, and input power of 150 W with wire speed of 50 m/min. The plasma annealing mechanism of Cu wire was disclosed by combining spectral diagnosis of the plasma and Cu wire performance characterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Oxide-nitride nanolayer stacks for enhanced passivation of p-type surfaces in silicon solar cells Accurately quantifying the recombination pathways unique in back contact solar cells Analyzing the effectiveness of various coatings to mitigate photovoltaic modules soiling in desert climate Solar energy harvester based on polarization insensitive and wide angle stable UWB absorber for UV, visible and IR frequency range Experimental evaluation of photovoltaic thermal (PVT) system using a modular heat collector with flat back shape fins, pipe, nanofluids and phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1