Zhenhua Xia , Guosheng Jia , Zeyu Tao , Wei Jia , Yishu Shi , Liwen Jin
{"title":"基于热经济和环境影响评估的地热供暖系统多目标优化","authors":"Zhenhua Xia , Guosheng Jia , Zeyu Tao , Wei Jia , Yishu Shi , Liwen Jin","doi":"10.1016/j.renene.2024.121858","DOIUrl":null,"url":null,"abstract":"<div><div>High-temperature geothermal resources are increasingly being explored as an alternative to coal and natural gas for space heating. In light of the growing demand for energy conservation and emission reduction, it is crucial to conduct a comprehensive evaluation of geothermal energy according to environmental impact and energy cost. Based on geothermal heating systems in Xi'an, China, this study develops a model involving the life cycle assessment (LCA) method to assess the borehole heat exchanger (BHE) in heating systems, encompassing carbon intensity (C<sub>intensity</sub>). The response surface method was employed to optimize the drilling depth, operating flow, and pipe diameter ratio, which influences carbon intensity. The findings revealed that the minimum C<sub>intensity</sub> is 24.11 g(CO<sub>2</sub>)·kWh<sup>−1</sup>, corresponding to a 4000 m burial depth, 20 m<sup>3</sup> h<sup>−1</sup> flow rate, and 0.54 diameter ratio. However, these results diverge from the minimum levelized cost of energy (LCOE) of $7.84/GJ, with 3912.8 m, 34.32 m<sup>3</sup> h<sup>−1</sup>, and 0.64. A dual-objective optimization indicates the allocation of weights to the objective functions influences the optimal drilling depth (the optimal value is between 3920.51 m and 3921.62 m) and operating flow rate (ranging from 28.8 to 31.4 m<sup>3</sup> h<sup>−1</sup>). The optimal outcomes for LCOE and C<sub>intensity</sub> are contingent upon the decision-makers' weight allocation.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121858"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of geothermal heating systems based on thermal economy and environmental impact evaluation\",\"authors\":\"Zhenhua Xia , Guosheng Jia , Zeyu Tao , Wei Jia , Yishu Shi , Liwen Jin\",\"doi\":\"10.1016/j.renene.2024.121858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-temperature geothermal resources are increasingly being explored as an alternative to coal and natural gas for space heating. In light of the growing demand for energy conservation and emission reduction, it is crucial to conduct a comprehensive evaluation of geothermal energy according to environmental impact and energy cost. Based on geothermal heating systems in Xi'an, China, this study develops a model involving the life cycle assessment (LCA) method to assess the borehole heat exchanger (BHE) in heating systems, encompassing carbon intensity (C<sub>intensity</sub>). The response surface method was employed to optimize the drilling depth, operating flow, and pipe diameter ratio, which influences carbon intensity. The findings revealed that the minimum C<sub>intensity</sub> is 24.11 g(CO<sub>2</sub>)·kWh<sup>−1</sup>, corresponding to a 4000 m burial depth, 20 m<sup>3</sup> h<sup>−1</sup> flow rate, and 0.54 diameter ratio. However, these results diverge from the minimum levelized cost of energy (LCOE) of $7.84/GJ, with 3912.8 m, 34.32 m<sup>3</sup> h<sup>−1</sup>, and 0.64. A dual-objective optimization indicates the allocation of weights to the objective functions influences the optimal drilling depth (the optimal value is between 3920.51 m and 3921.62 m) and operating flow rate (ranging from 28.8 to 31.4 m<sup>3</sup> h<sup>−1</sup>). The optimal outcomes for LCOE and C<sub>intensity</sub> are contingent upon the decision-makers' weight allocation.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"237 \",\"pages\":\"Article 121858\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148124019268\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124019268","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Multi-objective optimization of geothermal heating systems based on thermal economy and environmental impact evaluation
High-temperature geothermal resources are increasingly being explored as an alternative to coal and natural gas for space heating. In light of the growing demand for energy conservation and emission reduction, it is crucial to conduct a comprehensive evaluation of geothermal energy according to environmental impact and energy cost. Based on geothermal heating systems in Xi'an, China, this study develops a model involving the life cycle assessment (LCA) method to assess the borehole heat exchanger (BHE) in heating systems, encompassing carbon intensity (Cintensity). The response surface method was employed to optimize the drilling depth, operating flow, and pipe diameter ratio, which influences carbon intensity. The findings revealed that the minimum Cintensity is 24.11 g(CO2)·kWh−1, corresponding to a 4000 m burial depth, 20 m3 h−1 flow rate, and 0.54 diameter ratio. However, these results diverge from the minimum levelized cost of energy (LCOE) of $7.84/GJ, with 3912.8 m, 34.32 m3 h−1, and 0.64. A dual-objective optimization indicates the allocation of weights to the objective functions influences the optimal drilling depth (the optimal value is between 3920.51 m and 3921.62 m) and operating flow rate (ranging from 28.8 to 31.4 m3 h−1). The optimal outcomes for LCOE and Cintensity are contingent upon the decision-makers' weight allocation.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.