Hainan Zhang , Jing Ding , Haichao Liu , Tao Ding , Yanhui Feng
{"title":"带有仿生物蜂窝通道蒸发器的环形热流器的启动调查和传热增强分析","authors":"Hainan Zhang , Jing Ding , Haichao Liu , Tao Ding , Yanhui Feng","doi":"10.1016/j.ijrefrig.2024.11.016","DOIUrl":null,"url":null,"abstract":"<div><div>Loop thermosyphon has the ability of heat transfer without external energy input, which has good application potential in many areas. Biomimetic flow channel is an effective way for heat transfer enhancement and resistance optimization, therefore it is a promising method to improve the performance of loop thermosyphon. While currently few studies have been conducted in this field. In this paper, the start-up stages, flow patterns and heat transfer performance of a loop thermosyphon with biomimetic honeycomb-channel evaporator are experimentally investigated, and compared with a loop thermosyphon with parallel-flow evaporator. The results show that the start-up of can be divided into three stages: stage dominated by heat conduction, stage dominated by boiling and stage transited to stable operation; For the steady-state performance, the heating power of the optimal point with the lowest thermal resistance increases from 90 W to 150 W with the increase of the filling ratio from 50 % to 70 %; Compared to loop thermosyphon with parallel-flow evaporator, loop thermosyphon with biomimetic honeycomb evaporator has lower thermal resistance. The decline of thermal resistance is 4.1 %–21.6 %, and is more significant under small heating power. This paper provides a simple and affordable method for heat transfer improvement of loop thermosyphon.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"169 ","pages":"Pages 383-390"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Start-up investigation and heat transfer enhancement analysis of a loop thermosyphon with biomimetic honeycomb-channel evaporator\",\"authors\":\"Hainan Zhang , Jing Ding , Haichao Liu , Tao Ding , Yanhui Feng\",\"doi\":\"10.1016/j.ijrefrig.2024.11.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Loop thermosyphon has the ability of heat transfer without external energy input, which has good application potential in many areas. Biomimetic flow channel is an effective way for heat transfer enhancement and resistance optimization, therefore it is a promising method to improve the performance of loop thermosyphon. While currently few studies have been conducted in this field. In this paper, the start-up stages, flow patterns and heat transfer performance of a loop thermosyphon with biomimetic honeycomb-channel evaporator are experimentally investigated, and compared with a loop thermosyphon with parallel-flow evaporator. The results show that the start-up of can be divided into three stages: stage dominated by heat conduction, stage dominated by boiling and stage transited to stable operation; For the steady-state performance, the heating power of the optimal point with the lowest thermal resistance increases from 90 W to 150 W with the increase of the filling ratio from 50 % to 70 %; Compared to loop thermosyphon with parallel-flow evaporator, loop thermosyphon with biomimetic honeycomb evaporator has lower thermal resistance. The decline of thermal resistance is 4.1 %–21.6 %, and is more significant under small heating power. This paper provides a simple and affordable method for heat transfer improvement of loop thermosyphon.</div></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":\"169 \",\"pages\":\"Pages 383-390\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014070072400402X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014070072400402X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Start-up investigation and heat transfer enhancement analysis of a loop thermosyphon with biomimetic honeycomb-channel evaporator
Loop thermosyphon has the ability of heat transfer without external energy input, which has good application potential in many areas. Biomimetic flow channel is an effective way for heat transfer enhancement and resistance optimization, therefore it is a promising method to improve the performance of loop thermosyphon. While currently few studies have been conducted in this field. In this paper, the start-up stages, flow patterns and heat transfer performance of a loop thermosyphon with biomimetic honeycomb-channel evaporator are experimentally investigated, and compared with a loop thermosyphon with parallel-flow evaporator. The results show that the start-up of can be divided into three stages: stage dominated by heat conduction, stage dominated by boiling and stage transited to stable operation; For the steady-state performance, the heating power of the optimal point with the lowest thermal resistance increases from 90 W to 150 W with the increase of the filling ratio from 50 % to 70 %; Compared to loop thermosyphon with parallel-flow evaporator, loop thermosyphon with biomimetic honeycomb evaporator has lower thermal resistance. The decline of thermal resistance is 4.1 %–21.6 %, and is more significant under small heating power. This paper provides a simple and affordable method for heat transfer improvement of loop thermosyphon.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.