{"title":"开发有机可溶、季铵化和负载萘普生钠的聚乙烯醇基电纺纳米纤维","authors":"Gokhan Acik , Neslihan Turhan Cakir , Cagatay Altinkok","doi":"10.1016/j.eurpolymj.2024.113565","DOIUrl":null,"url":null,"abstract":"<div><div>Electrospinning is an effective and common method utilized to produce fibers from sub-micrometer to nanoscale. Although poly(vinyl alcohol) (PVA) can be easily electrospun in water, its widespread usage limited in electrospinning applications due to its poor solubility in organic solvents. In this regard, this study concentrated on partially modifying of PVA via chemical transformation by treating with dichloroacetic acid (DCAA) (poly(VA-<em>co</em>-VDCAc)) and triethyl amine (TEA) (poly(VA-<em>co</em>-VDCAc-<em>co</em>-QVAc)), respectively to increase organosolubility as well as provide antibacterial activity. Additionally, the modal drug, namely naproxen sodium (NAP), was incorporated into the modified polymer matrixes by simple blending. Electrospinning method was applied to fabricate the organosoluble, quaternized and NAP-loaded PVA-based nanofibers as potential drug carriers in controlled drug release. The chemical structure, morphology, wettability as well as the thermal features of the obtained nanofibers and their precursors at various stages were investigated using Fourier-transform infrared (FT-IR), proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectroscopies, scanning electron microscopy (SEM), water contact angle (WCA) measurements, thermogravimetric and differential scanning calorimetry (TGA and DSC) analyses, respectively. SEM images proved that the nanofibers had noticeably smooth, cylindrical, uniform, and continuous and the modification reactions were affected the mean diameter of the samples. The utilization of modified electrospun PVA-based nanofibers as carrier for delivery of naproxen sodium (NAP) was elucidated. Release behaviors of the electrospun fibers were determined at pH 7.4, and the release of the NAP was faster for non-quaternized sample. Antibacterial activity of electrospun nanofibers against <em>Escherichia coli</em> <!-->(<em>E. coli</em>) and<!--> <em>Staphylococcus aureus</em> (<em>S. aureus</em>) bacteria was evaluated in vitro, and poly(VA-<em>co</em>-VDCAc-<em>co</em>-QVAc)s electrospun nanofibers have better potential in killing bacteria. Overall, this research provides useful guidance for tailoring electrospinning processes for drug delivery of PVA-based materials.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"221 ","pages":"Article 113565"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of organosoluble, quaternized and naproxen sodium- loaded poly(vinyl alcohol)-based electrospun nanofibers\",\"authors\":\"Gokhan Acik , Neslihan Turhan Cakir , Cagatay Altinkok\",\"doi\":\"10.1016/j.eurpolymj.2024.113565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrospinning is an effective and common method utilized to produce fibers from sub-micrometer to nanoscale. Although poly(vinyl alcohol) (PVA) can be easily electrospun in water, its widespread usage limited in electrospinning applications due to its poor solubility in organic solvents. In this regard, this study concentrated on partially modifying of PVA via chemical transformation by treating with dichloroacetic acid (DCAA) (poly(VA-<em>co</em>-VDCAc)) and triethyl amine (TEA) (poly(VA-<em>co</em>-VDCAc-<em>co</em>-QVAc)), respectively to increase organosolubility as well as provide antibacterial activity. Additionally, the modal drug, namely naproxen sodium (NAP), was incorporated into the modified polymer matrixes by simple blending. Electrospinning method was applied to fabricate the organosoluble, quaternized and NAP-loaded PVA-based nanofibers as potential drug carriers in controlled drug release. The chemical structure, morphology, wettability as well as the thermal features of the obtained nanofibers and their precursors at various stages were investigated using Fourier-transform infrared (FT-IR), proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectroscopies, scanning electron microscopy (SEM), water contact angle (WCA) measurements, thermogravimetric and differential scanning calorimetry (TGA and DSC) analyses, respectively. SEM images proved that the nanofibers had noticeably smooth, cylindrical, uniform, and continuous and the modification reactions were affected the mean diameter of the samples. The utilization of modified electrospun PVA-based nanofibers as carrier for delivery of naproxen sodium (NAP) was elucidated. Release behaviors of the electrospun fibers were determined at pH 7.4, and the release of the NAP was faster for non-quaternized sample. Antibacterial activity of electrospun nanofibers against <em>Escherichia coli</em> <!-->(<em>E. coli</em>) and<!--> <em>Staphylococcus aureus</em> (<em>S. aureus</em>) bacteria was evaluated in vitro, and poly(VA-<em>co</em>-VDCAc-<em>co</em>-QVAc)s electrospun nanofibers have better potential in killing bacteria. Overall, this research provides useful guidance for tailoring electrospinning processes for drug delivery of PVA-based materials.</div></div>\",\"PeriodicalId\":315,\"journal\":{\"name\":\"European Polymer Journal\",\"volume\":\"221 \",\"pages\":\"Article 113565\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014305724008267\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724008267","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Development of organosoluble, quaternized and naproxen sodium- loaded poly(vinyl alcohol)-based electrospun nanofibers
Electrospinning is an effective and common method utilized to produce fibers from sub-micrometer to nanoscale. Although poly(vinyl alcohol) (PVA) can be easily electrospun in water, its widespread usage limited in electrospinning applications due to its poor solubility in organic solvents. In this regard, this study concentrated on partially modifying of PVA via chemical transformation by treating with dichloroacetic acid (DCAA) (poly(VA-co-VDCAc)) and triethyl amine (TEA) (poly(VA-co-VDCAc-co-QVAc)), respectively to increase organosolubility as well as provide antibacterial activity. Additionally, the modal drug, namely naproxen sodium (NAP), was incorporated into the modified polymer matrixes by simple blending. Electrospinning method was applied to fabricate the organosoluble, quaternized and NAP-loaded PVA-based nanofibers as potential drug carriers in controlled drug release. The chemical structure, morphology, wettability as well as the thermal features of the obtained nanofibers and their precursors at various stages were investigated using Fourier-transform infrared (FT-IR), proton nuclear magnetic resonance (1H NMR) spectroscopies, scanning electron microscopy (SEM), water contact angle (WCA) measurements, thermogravimetric and differential scanning calorimetry (TGA and DSC) analyses, respectively. SEM images proved that the nanofibers had noticeably smooth, cylindrical, uniform, and continuous and the modification reactions were affected the mean diameter of the samples. The utilization of modified electrospun PVA-based nanofibers as carrier for delivery of naproxen sodium (NAP) was elucidated. Release behaviors of the electrospun fibers were determined at pH 7.4, and the release of the NAP was faster for non-quaternized sample. Antibacterial activity of electrospun nanofibers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria was evaluated in vitro, and poly(VA-co-VDCAc-co-QVAc)s electrospun nanofibers have better potential in killing bacteria. Overall, this research provides useful guidance for tailoring electrospinning processes for drug delivery of PVA-based materials.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.