{"title":"基于收敛因子和数学螺旋的蜣螂优化器的离网混合可再生能源系统优化调度","authors":"Xun Liu, Jie-Sheng Wang, Song-Bo Zhang, Xin-Yi Guan, Yuan-Zheng Gao","doi":"10.1016/j.renene.2024.121874","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of renewable energy and the increasing modernization demands in remote areas, off-grid hybrid renewable energy systems (HRES) have become a key technology for achieving sustainable development. This paper presents an improved Dung Beetle Optimization (DBO) algorithm that enhances step size by introducing six elementary functions as convergence factors. It combines polar coordinate expressions of three different mathematical spirals, multiplied by a zeroing factor related to the number of iterations, resulting in six distinct mathematical images that optimize the algorithm's dancing path, thereby enhancing global search capability. Experiments on the CEC2022 test functions demonstrate improved optimization performance of the algorithm. Furthermore, the algorithm is applied to the optimization design of off-grid HRES, integrating configurations such as photovoltaic panels, wind turbines, biomass generators and various battery types (Lead Acid battery/Lithium-Ion/Nickel-Iron), with lifecycle cost as the objective function while assessing energy costs. The results indicate that the nickel-iron battery system optimized by the improved DBO algorithm achieves the lowest lifecycle cost ($961,139) and energy cost ($0.3607/kWh), requiring a total of 1329 PV panels, no wind turbines, and 268 nickel-iron battery units.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121874"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization scheduling of off-grid hybrid renewable energy systems based on dung beetle optimizer with convergence factor and mathematical spiral\",\"authors\":\"Xun Liu, Jie-Sheng Wang, Song-Bo Zhang, Xin-Yi Guan, Yuan-Zheng Gao\",\"doi\":\"10.1016/j.renene.2024.121874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid development of renewable energy and the increasing modernization demands in remote areas, off-grid hybrid renewable energy systems (HRES) have become a key technology for achieving sustainable development. This paper presents an improved Dung Beetle Optimization (DBO) algorithm that enhances step size by introducing six elementary functions as convergence factors. It combines polar coordinate expressions of three different mathematical spirals, multiplied by a zeroing factor related to the number of iterations, resulting in six distinct mathematical images that optimize the algorithm's dancing path, thereby enhancing global search capability. Experiments on the CEC2022 test functions demonstrate improved optimization performance of the algorithm. Furthermore, the algorithm is applied to the optimization design of off-grid HRES, integrating configurations such as photovoltaic panels, wind turbines, biomass generators and various battery types (Lead Acid battery/Lithium-Ion/Nickel-Iron), with lifecycle cost as the objective function while assessing energy costs. The results indicate that the nickel-iron battery system optimized by the improved DBO algorithm achieves the lowest lifecycle cost ($961,139) and energy cost ($0.3607/kWh), requiring a total of 1329 PV panels, no wind turbines, and 268 nickel-iron battery units.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"237 \",\"pages\":\"Article 121874\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148124019426\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124019426","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimization scheduling of off-grid hybrid renewable energy systems based on dung beetle optimizer with convergence factor and mathematical spiral
With the rapid development of renewable energy and the increasing modernization demands in remote areas, off-grid hybrid renewable energy systems (HRES) have become a key technology for achieving sustainable development. This paper presents an improved Dung Beetle Optimization (DBO) algorithm that enhances step size by introducing six elementary functions as convergence factors. It combines polar coordinate expressions of three different mathematical spirals, multiplied by a zeroing factor related to the number of iterations, resulting in six distinct mathematical images that optimize the algorithm's dancing path, thereby enhancing global search capability. Experiments on the CEC2022 test functions demonstrate improved optimization performance of the algorithm. Furthermore, the algorithm is applied to the optimization design of off-grid HRES, integrating configurations such as photovoltaic panels, wind turbines, biomass generators and various battery types (Lead Acid battery/Lithium-Ion/Nickel-Iron), with lifecycle cost as the objective function while assessing energy costs. The results indicate that the nickel-iron battery system optimized by the improved DBO algorithm achieves the lowest lifecycle cost ($961,139) and energy cost ($0.3607/kWh), requiring a total of 1329 PV panels, no wind turbines, and 268 nickel-iron battery units.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.