从红树林内生真菌中发现药物化合物

IF 3.4 3区 生物学 Q1 PLANT SCIENCES Rhizosphere Pub Date : 2024-11-08 DOI:10.1016/j.rhisph.2024.100989
Siriluck Iamtham , Anyalak Wachirachaikarn , Kathawut Sopalun , Nongpanga Jarussophon
{"title":"从红树林内生真菌中发现药物化合物","authors":"Siriluck Iamtham ,&nbsp;Anyalak Wachirachaikarn ,&nbsp;Kathawut Sopalun ,&nbsp;Nongpanga Jarussophon","doi":"10.1016/j.rhisph.2024.100989","DOIUrl":null,"url":null,"abstract":"<div><div>Mangrove forest is a unique wetland ecosystem that is highly productive and provides an environment for a variety of microorganisms. Endophytic fungi derived from mangrove plants provide the plants with protection from adverse environmental conditions, while also allowing the fungi to produce valuable bioactive compounds. The present study sampled 11 mangrove trees and isolated, screened, and identified the potent endophytic fungi and their bioactive substances showing anti-pathogenic, anti-mutagenic and antioxidant activities, while the endophytes were investigated for their enzymatic potential. In total, 47 endophytic fungi were isolated from the leaves (36) and stems (11) of the host plants and all isolates were tested for antagonistic activities against selected plant pathogens. Based on the results, isolates BgS-04 and BcL-05 had the highest anti-pathogenic activities against <em>Curvularia</em> sp., <em>Fusarium</em> sp., and <em>Colletotrichum</em> sp. Therefore, the ethyl acetate crude extracts from these two fungi were further investigated for their antioxidant and anti-mutagenic activities and their phenolic compound contents, based on phytochemical analysis. Based on the results, the crude extracts of BgS-04 and BcL-05 contained 5.24 and 4.8 mg gallic acid equivalent/g of total phenolic compounds, respectively, and had antioxidant activity (half maximal inhibitory concentration) levels of 7.4 and 4.26 mg/mL, respectively. The preliminary qualitative phytochemical analysis of the fungal crude extracts identified tannins and coumarins. The anti-mutagenic activity levels of BgS-04 and BcL-05 against the mutagenic compounds, Trp-P-1 and DMBA, were determined using the Ames test, which revealed that the crude extracts of BgS-04 and BcL-05 had moderate-to-high antimutagenic potential against TA98 and TA100.</div><div>All 47 endophytic isolates were assessed for their potential role in producing extracellular enzyme; they were capable of producing protease (53%), pectinase (28%), amylase (26%) and cellulase (19%) but none of them produced lipase. Among the isolates, RmL-01 derived from the leaves of <em>Rhizophora mucronata</em> had the significantly highest amylase production. Maximum amylase production (141.2 U/mL) was observed at 30 °C, pH 7.0 and 120 h of incubation time. Molecular identification of the isolates BgS-04, BcL-05 and RmL-01 using nuclear ribosomal DNA internal transcribed spacer sequences revealed that they were <em>Pestalotiopsis parva</em>, <em>Collectotrichum perseae</em>, and <em>Aspergillus oryzae</em>, respectively, with high bootstrap support. It was concluded that the distinct groups of mangrove endophytes were potential sources of novel and valuable bio-based compounds with impressive anti-plant pathogen, anti-mutagenic, and antioxidant activities and capable of producing multi-industrial enzyme cocktails that might be important and useful for biotechnological applications.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100989"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of pharmaceutical compounds in endophytic fungi from mangrove trees\",\"authors\":\"Siriluck Iamtham ,&nbsp;Anyalak Wachirachaikarn ,&nbsp;Kathawut Sopalun ,&nbsp;Nongpanga Jarussophon\",\"doi\":\"10.1016/j.rhisph.2024.100989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mangrove forest is a unique wetland ecosystem that is highly productive and provides an environment for a variety of microorganisms. Endophytic fungi derived from mangrove plants provide the plants with protection from adverse environmental conditions, while also allowing the fungi to produce valuable bioactive compounds. The present study sampled 11 mangrove trees and isolated, screened, and identified the potent endophytic fungi and their bioactive substances showing anti-pathogenic, anti-mutagenic and antioxidant activities, while the endophytes were investigated for their enzymatic potential. In total, 47 endophytic fungi were isolated from the leaves (36) and stems (11) of the host plants and all isolates were tested for antagonistic activities against selected plant pathogens. Based on the results, isolates BgS-04 and BcL-05 had the highest anti-pathogenic activities against <em>Curvularia</em> sp., <em>Fusarium</em> sp., and <em>Colletotrichum</em> sp. Therefore, the ethyl acetate crude extracts from these two fungi were further investigated for their antioxidant and anti-mutagenic activities and their phenolic compound contents, based on phytochemical analysis. Based on the results, the crude extracts of BgS-04 and BcL-05 contained 5.24 and 4.8 mg gallic acid equivalent/g of total phenolic compounds, respectively, and had antioxidant activity (half maximal inhibitory concentration) levels of 7.4 and 4.26 mg/mL, respectively. The preliminary qualitative phytochemical analysis of the fungal crude extracts identified tannins and coumarins. The anti-mutagenic activity levels of BgS-04 and BcL-05 against the mutagenic compounds, Trp-P-1 and DMBA, were determined using the Ames test, which revealed that the crude extracts of BgS-04 and BcL-05 had moderate-to-high antimutagenic potential against TA98 and TA100.</div><div>All 47 endophytic isolates were assessed for their potential role in producing extracellular enzyme; they were capable of producing protease (53%), pectinase (28%), amylase (26%) and cellulase (19%) but none of them produced lipase. Among the isolates, RmL-01 derived from the leaves of <em>Rhizophora mucronata</em> had the significantly highest amylase production. Maximum amylase production (141.2 U/mL) was observed at 30 °C, pH 7.0 and 120 h of incubation time. Molecular identification of the isolates BgS-04, BcL-05 and RmL-01 using nuclear ribosomal DNA internal transcribed spacer sequences revealed that they were <em>Pestalotiopsis parva</em>, <em>Collectotrichum perseae</em>, and <em>Aspergillus oryzae</em>, respectively, with high bootstrap support. It was concluded that the distinct groups of mangrove endophytes were potential sources of novel and valuable bio-based compounds with impressive anti-plant pathogen, anti-mutagenic, and antioxidant activities and capable of producing multi-industrial enzyme cocktails that might be important and useful for biotechnological applications.</div></div>\",\"PeriodicalId\":48589,\"journal\":{\"name\":\"Rhizosphere\",\"volume\":\"32 \",\"pages\":\"Article 100989\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rhizosphere\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452219824001447\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizosphere","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219824001447","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

红树林是一种独特的湿地生态系统,具有很高的生产力,为各种微生物提供了生存环境。从红树植物中提取的内生真菌能保护植物免受不利环境条件的影响,同时还能使真菌产生有价值的生物活性化合物。本研究对 11 棵红树进行了采样,并分离、筛选和鉴定了具有抗病原性、抗突变性和抗氧化性的强效内生真菌及其生物活性物质,同时还对内生真菌的酶潜能进行了研究。从寄主植物的叶(36 株)和茎(11 株)中共分离出 47 株内生真菌,并对所有分离物进行了针对特定植物病原体的拮抗活性测试。因此,根据植物化学分析,进一步研究了这两种真菌的乙酸乙酯粗提取物的抗氧化和抗突变活性及其酚类化合物含量。结果表明,BgS-04 和 BcL-05 的粗提取物分别含有 5.24 和 4.8 毫克没食子酸当量/克的总酚类化合物,其抗氧化活性(半数最大抑制浓度)水平分别为 7.4 和 4.26 毫克/毫升。真菌粗提取物的初步定性植物化学分析确定了单宁和香豆素。利用 Ames 试验测定了 BgS-04 和 BcL-05 对诱变化合物 Trp-P-1 和 DMBA 的抗诱变活性水平,结果表明 BgS-04 和 BcL-05 的粗提取物对 TA98 和 TA100 具有中等到较高的抗诱变潜力。对所有 47 个内生分离物生产胞外酶的潜在作用进行了评估;它们能够生产蛋白酶(53%)、果胶酶(28%)、淀粉酶(26%)和纤维素酶(19%),但没有一个能生产脂肪酶。在这些分离物中,从Rhizophora mucronata叶片中提取的RmL-01的淀粉酶产量明显最高。在温度为 30 °C、pH 值为 7.0、培养时间为 120 小时时,淀粉酶产量最高(141.2 U/mL)。利用核核糖体 DNA 内部转录间隔序列对分离物 BgS-04、BcL-05 和 RmL-01 进行分子鉴定后发现,它们分别是 Pestalotiopsis parva、Collectotrichum perseae 和 Aspergillus oryzae,且引导支持率较高。结论是,这些不同的红树林内生菌群是新颖和有价值的生物基化合物的潜在来源,具有令人印象深刻的抗植物病原体、抗突变和抗氧化活性,并能生产多种工业酶鸡尾酒,可能对生物技术应用非常重要和有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of pharmaceutical compounds in endophytic fungi from mangrove trees
Mangrove forest is a unique wetland ecosystem that is highly productive and provides an environment for a variety of microorganisms. Endophytic fungi derived from mangrove plants provide the plants with protection from adverse environmental conditions, while also allowing the fungi to produce valuable bioactive compounds. The present study sampled 11 mangrove trees and isolated, screened, and identified the potent endophytic fungi and their bioactive substances showing anti-pathogenic, anti-mutagenic and antioxidant activities, while the endophytes were investigated for their enzymatic potential. In total, 47 endophytic fungi were isolated from the leaves (36) and stems (11) of the host plants and all isolates were tested for antagonistic activities against selected plant pathogens. Based on the results, isolates BgS-04 and BcL-05 had the highest anti-pathogenic activities against Curvularia sp., Fusarium sp., and Colletotrichum sp. Therefore, the ethyl acetate crude extracts from these two fungi were further investigated for their antioxidant and anti-mutagenic activities and their phenolic compound contents, based on phytochemical analysis. Based on the results, the crude extracts of BgS-04 and BcL-05 contained 5.24 and 4.8 mg gallic acid equivalent/g of total phenolic compounds, respectively, and had antioxidant activity (half maximal inhibitory concentration) levels of 7.4 and 4.26 mg/mL, respectively. The preliminary qualitative phytochemical analysis of the fungal crude extracts identified tannins and coumarins. The anti-mutagenic activity levels of BgS-04 and BcL-05 against the mutagenic compounds, Trp-P-1 and DMBA, were determined using the Ames test, which revealed that the crude extracts of BgS-04 and BcL-05 had moderate-to-high antimutagenic potential against TA98 and TA100.
All 47 endophytic isolates were assessed for their potential role in producing extracellular enzyme; they were capable of producing protease (53%), pectinase (28%), amylase (26%) and cellulase (19%) but none of them produced lipase. Among the isolates, RmL-01 derived from the leaves of Rhizophora mucronata had the significantly highest amylase production. Maximum amylase production (141.2 U/mL) was observed at 30 °C, pH 7.0 and 120 h of incubation time. Molecular identification of the isolates BgS-04, BcL-05 and RmL-01 using nuclear ribosomal DNA internal transcribed spacer sequences revealed that they were Pestalotiopsis parva, Collectotrichum perseae, and Aspergillus oryzae, respectively, with high bootstrap support. It was concluded that the distinct groups of mangrove endophytes were potential sources of novel and valuable bio-based compounds with impressive anti-plant pathogen, anti-mutagenic, and antioxidant activities and capable of producing multi-industrial enzyme cocktails that might be important and useful for biotechnological applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rhizosphere
Rhizosphere Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
5.70
自引率
8.10%
发文量
155
审稿时长
29 days
期刊介绍: Rhizosphere aims to advance the frontier of our understanding of plant-soil interactions. Rhizosphere is a multidisciplinary journal that publishes research on the interactions between plant roots, soil organisms, nutrients, and water. Except carbon fixation by photosynthesis, plants obtain all other elements primarily from soil through roots. We are beginning to understand how communications at the rhizosphere, with soil organisms and other plant species, affect root exudates and nutrient uptake. This rapidly evolving subject utilizes molecular biology and genomic tools, food web or community structure manipulations, high performance liquid chromatography, isotopic analysis, diverse spectroscopic analytics, tomography and other microscopy, complex statistical and modeling tools.
期刊最新文献
Plant-microbial interplay for organic nitrogen mediated by functional specificity of root compartments Phosphorus bioavailability and silicon fractionation in wheat rhizosphere affected by soil water content and silicon application The root extracellular trap: A checkpoint controlling root tip accessibility to microorganisms Diverging role of phytohormones and soil nutrients between two broad and narrow-distribution orchids of Satyrium species Host selection shapes structure and network of microbial community of Epimedium plants along the soil–rhizosphere–plant continuum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1