碱硅反应对钩形钢筋性能的影响

IF 7.4 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Construction and Building Materials Pub Date : 2024-11-16 DOI:10.1016/j.conbuildmat.2024.139212
Ali Mirzagulpour, Hossein Yousefpour, Arash Mozafari
{"title":"碱硅反应对钩形钢筋性能的影响","authors":"Ali Mirzagulpour,&nbsp;Hossein Yousefpour,&nbsp;Arash Mozafari","doi":"10.1016/j.conbuildmat.2024.139212","DOIUrl":null,"url":null,"abstract":"<div><div>The Alkali-silica reaction (ASR) is a deterioration phenomenon that causes undesirable expansion and cracking in hardened concrete. This reaction usually occurs between certain types of reactive aggregates and high-alkali cement and is reported in a notable number of reinforced concrete (RC) structures worldwide, for which assessing the residual performance is critical. Many of these structures employ hooked bars to provide anchorage, especially in their joint regions. This paper examines the pull-out behavior of hooked bars in RC beam-column joints affected by ASR to help assist with safety evaluation of RC structures impacted by this reaction. A set of 7 full-scale RC columns was fabricated with concrete containing reactive fine aggregates, which incorporated different hooked bar diameters and amounts of transverse reinforcement. The specimens were subjected to pull-out of their hooked bars either in control conditions or after curing in a relative humidity of 100 % and a temperature of 50°C for up to 303 days to achieve different levels of ASR-induced expansions. Results showed that up to an unrestrained uniaxial expansion level of 0.2 %, the ASR-affected hooked bars showed an increase by up to 22 % in their ultimate pull-out capacity but a notable reduction in their ductility. Despite distributed cracking in ASR-affected specimens, their failure mode was relatively similar to that in the control specimen and remained a combination of side and front failure.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"455 ","pages":"Article 139212"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of alkali silica reaction on the performance of hooked bars\",\"authors\":\"Ali Mirzagulpour,&nbsp;Hossein Yousefpour,&nbsp;Arash Mozafari\",\"doi\":\"10.1016/j.conbuildmat.2024.139212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Alkali-silica reaction (ASR) is a deterioration phenomenon that causes undesirable expansion and cracking in hardened concrete. This reaction usually occurs between certain types of reactive aggregates and high-alkali cement and is reported in a notable number of reinforced concrete (RC) structures worldwide, for which assessing the residual performance is critical. Many of these structures employ hooked bars to provide anchorage, especially in their joint regions. This paper examines the pull-out behavior of hooked bars in RC beam-column joints affected by ASR to help assist with safety evaluation of RC structures impacted by this reaction. A set of 7 full-scale RC columns was fabricated with concrete containing reactive fine aggregates, which incorporated different hooked bar diameters and amounts of transverse reinforcement. The specimens were subjected to pull-out of their hooked bars either in control conditions or after curing in a relative humidity of 100 % and a temperature of 50°C for up to 303 days to achieve different levels of ASR-induced expansions. Results showed that up to an unrestrained uniaxial expansion level of 0.2 %, the ASR-affected hooked bars showed an increase by up to 22 % in their ultimate pull-out capacity but a notable reduction in their ductility. Despite distributed cracking in ASR-affected specimens, their failure mode was relatively similar to that in the control specimen and remained a combination of side and front failure.</div></div>\",\"PeriodicalId\":288,\"journal\":{\"name\":\"Construction and Building Materials\",\"volume\":\"455 \",\"pages\":\"Article 139212\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction and Building Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095006182404354X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095006182404354X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

碱硅反应(ASR)是一种劣化现象,会导致硬化混凝土出现不理想的膨胀和开裂。这种反应通常发生在某些类型的活性集料和高碱水泥之间,据报道在全球大量钢筋混凝土(RC)结构中都有发生,因此评估残余性能至关重要。许多此类结构都采用了钩形钢筋来提供锚固,尤其是在连接区域。本文研究了受 ASR 影响的 RC 梁柱连接中钩形钢筋的拉拔行为,以帮助对受这种反应影响的 RC 结构进行安全评估。我们用含有反应性细骨料的混凝土制作了一组 7 根全尺寸 RC 柱,其中包含不同直径和数量的横向钢筋。这些试件在控制条件下或在相对湿度为 100%、温度为 50°C 的环境中养护长达 303 天后,其带钩钢筋会被拉出,以实现不同程度的 ASR 诱导膨胀。结果表明,在 0.2% 的无约束单轴膨胀水平下,受 ASR 影响的带钩钢筋的极限拉拔能力最多可提高 22%,但延展性明显下降。尽管在受 ASR 影响的试样中出现了分布式裂纹,但其破坏模式与对照试样相对类似,仍然是侧面和正面破坏的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of alkali silica reaction on the performance of hooked bars
The Alkali-silica reaction (ASR) is a deterioration phenomenon that causes undesirable expansion and cracking in hardened concrete. This reaction usually occurs between certain types of reactive aggregates and high-alkali cement and is reported in a notable number of reinforced concrete (RC) structures worldwide, for which assessing the residual performance is critical. Many of these structures employ hooked bars to provide anchorage, especially in their joint regions. This paper examines the pull-out behavior of hooked bars in RC beam-column joints affected by ASR to help assist with safety evaluation of RC structures impacted by this reaction. A set of 7 full-scale RC columns was fabricated with concrete containing reactive fine aggregates, which incorporated different hooked bar diameters and amounts of transverse reinforcement. The specimens were subjected to pull-out of their hooked bars either in control conditions or after curing in a relative humidity of 100 % and a temperature of 50°C for up to 303 days to achieve different levels of ASR-induced expansions. Results showed that up to an unrestrained uniaxial expansion level of 0.2 %, the ASR-affected hooked bars showed an increase by up to 22 % in their ultimate pull-out capacity but a notable reduction in their ductility. Despite distributed cracking in ASR-affected specimens, their failure mode was relatively similar to that in the control specimen and remained a combination of side and front failure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Construction and Building Materials
Construction and Building Materials 工程技术-材料科学:综合
CiteScore
13.80
自引率
21.60%
发文量
3632
审稿时长
82 days
期刊介绍: Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged. Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.
期刊最新文献
Durability against cyclic wetting-drying of cement-stabilized loess subgrade for railway in tropical semi-arid regions Lightweight, high-strength, thermal- and sound-insulating reed scraps/portland cement composite using extruded resin particles Concrete mix design: Optimizing recycled asphalt pavement in Portland cement concrete A multidisciplinary evaluation of mixtures of municipal solid waste incineration bottom ash and mine tailings for sustainable geotechnical solutions Dynamic splitting tensile properties of crumb rubber modified ultra-high performance engineered cementitious composites (UHP-ECC)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1