{"title":"利用人工智能优化塑料和生物质的热解和共热解过程","authors":"Manish Sharma Timilsina , Yuvraj Chaudhary , Prikshya Bhattarai , Bibek Uprety , Dilip Khatiwada","doi":"10.1016/j.ecmx.2024.100783","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid increase in biomass and plastic waste poses significant environmental challenges. Co-pyrolysis of biomass with plastic wastes offers a promising avenue for sustainable waste management and renewable energy generation. This study covers several novel aspects: First, it investigates the impacts of feedstock composition and operating conditions in pyrolysis (individual feedstock) and co-pyrolysis (biomass and plastic wastes). The study reveals that synergistic effects, specifically improved yields and optimized temperature, exist in the co-pyrolysis of biomass and plastic wastes compared to individual feedstock. Secondly, a suitable blended machine learning predictive model (with Random Forest, Gradient Boosting Regressor, and XGBoost) and robust optimization framework are developed to address model accuracy, non-linear interactions, and uncertainties in pyrolysis such as temperature, heating rate, and biomass-to-plastic ratio. This study predicts the bio-oil yield quantitatively (amount) and qualitatively (composition) with high accuracy (R<sup>2</sup> > 0.97). Thirdly, key factors contributing to yield include plastic content (18 %) and biomass type (13 %) have been identified through Gini feature importance and Shapley Additive Explanation (SHAP) analysis. Furthermore, multi-objective optimization techniques reveal the most optimal bio-oil yield under specific conditions, supported by uncertainty analysis, which confines bio-oil yield to a range of 30–50 %. Finally, it also demonstrates a case study to find the optimal bio-oil yield and quality conditions using co-pyrolysis of local resources, i.e., biomass (wood and bagasse) and plastic wastes. The case study suggests optimal conditions like > 50 °C heating rate, <50 min pyrolysis time, and > 60 % plastic content in a blend of wood and HDPE. This study assists industries and policymakers to assess and understand the viability of co-pyrolysis, optimal design parameters, and process impacts.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100783"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing pyrolysis and Co-Pyrolysis of plastic and biomass using Artificial Intelligence\",\"authors\":\"Manish Sharma Timilsina , Yuvraj Chaudhary , Prikshya Bhattarai , Bibek Uprety , Dilip Khatiwada\",\"doi\":\"10.1016/j.ecmx.2024.100783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid increase in biomass and plastic waste poses significant environmental challenges. Co-pyrolysis of biomass with plastic wastes offers a promising avenue for sustainable waste management and renewable energy generation. This study covers several novel aspects: First, it investigates the impacts of feedstock composition and operating conditions in pyrolysis (individual feedstock) and co-pyrolysis (biomass and plastic wastes). The study reveals that synergistic effects, specifically improved yields and optimized temperature, exist in the co-pyrolysis of biomass and plastic wastes compared to individual feedstock. Secondly, a suitable blended machine learning predictive model (with Random Forest, Gradient Boosting Regressor, and XGBoost) and robust optimization framework are developed to address model accuracy, non-linear interactions, and uncertainties in pyrolysis such as temperature, heating rate, and biomass-to-plastic ratio. This study predicts the bio-oil yield quantitatively (amount) and qualitatively (composition) with high accuracy (R<sup>2</sup> > 0.97). Thirdly, key factors contributing to yield include plastic content (18 %) and biomass type (13 %) have been identified through Gini feature importance and Shapley Additive Explanation (SHAP) analysis. Furthermore, multi-objective optimization techniques reveal the most optimal bio-oil yield under specific conditions, supported by uncertainty analysis, which confines bio-oil yield to a range of 30–50 %. Finally, it also demonstrates a case study to find the optimal bio-oil yield and quality conditions using co-pyrolysis of local resources, i.e., biomass (wood and bagasse) and plastic wastes. The case study suggests optimal conditions like > 50 °C heating rate, <50 min pyrolysis time, and > 60 % plastic content in a blend of wood and HDPE. This study assists industries and policymakers to assess and understand the viability of co-pyrolysis, optimal design parameters, and process impacts.</div></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":\"24 \",\"pages\":\"Article 100783\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524002617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524002617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimizing pyrolysis and Co-Pyrolysis of plastic and biomass using Artificial Intelligence
The rapid increase in biomass and plastic waste poses significant environmental challenges. Co-pyrolysis of biomass with plastic wastes offers a promising avenue for sustainable waste management and renewable energy generation. This study covers several novel aspects: First, it investigates the impacts of feedstock composition and operating conditions in pyrolysis (individual feedstock) and co-pyrolysis (biomass and plastic wastes). The study reveals that synergistic effects, specifically improved yields and optimized temperature, exist in the co-pyrolysis of biomass and plastic wastes compared to individual feedstock. Secondly, a suitable blended machine learning predictive model (with Random Forest, Gradient Boosting Regressor, and XGBoost) and robust optimization framework are developed to address model accuracy, non-linear interactions, and uncertainties in pyrolysis such as temperature, heating rate, and biomass-to-plastic ratio. This study predicts the bio-oil yield quantitatively (amount) and qualitatively (composition) with high accuracy (R2 > 0.97). Thirdly, key factors contributing to yield include plastic content (18 %) and biomass type (13 %) have been identified through Gini feature importance and Shapley Additive Explanation (SHAP) analysis. Furthermore, multi-objective optimization techniques reveal the most optimal bio-oil yield under specific conditions, supported by uncertainty analysis, which confines bio-oil yield to a range of 30–50 %. Finally, it also demonstrates a case study to find the optimal bio-oil yield and quality conditions using co-pyrolysis of local resources, i.e., biomass (wood and bagasse) and plastic wastes. The case study suggests optimal conditions like > 50 °C heating rate, <50 min pyrolysis time, and > 60 % plastic content in a blend of wood and HDPE. This study assists industries and policymakers to assess and understand the viability of co-pyrolysis, optimal design parameters, and process impacts.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.