{"title":"以甘油为氢供体,使用氧化锆镍钼催化剂从棕榈油脱氧中生产生物燃料","authors":"Nitchakul Hongloi , Tawsif Rahman , Bijoy Biswas , Farshad Feyzbar-Khalkhali-Nejad , Chaiwat Prapainainar , Peerawat Wongsurakul , Pavlo Ivanchenko , Deb P. Jaisi , Emmanuel Aransiola , Lihua Zhang , Mohamed Ammar , Jonas Baltrusaitis , Paweena Prapainainar , Sushil Adhikari","doi":"10.1016/j.ecmx.2024.100781","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for renewable energy has generated interest in biofuels as alternatives to fossil fuels. Second-generation biofuels, derived from deoxygenating fats and oils, have garnered a higher level of interest from industry and academia due to their potential for direct replacement of diesel and jet fuels. Palm oil, mostly cultivated in Thailand and composed of C16 and C18 fatty acids, is a primary feedstock sought for biofuel production. Palm oil deoxygenation contains several pathways that may or may not require hydrogen gas. This study aimed to produce biofuels in different fuel ranges, such as gasoline, jet fuel, and diesel, through palm oil deoxygenation using glycerol as a hydrogen source. Glycerol, a low-value byproduct, was used as a hydrogen donor, whereas nickel-molybdenum-supported catalysts were chosen for their high efficiency in deoxygenation and cost-effectiveness. The study investigated the impact of reaction time, temperature, and catalyst activation method on palm oil deoxygenation. Catalyst characterization methods, including XRD, SEM, TEM, XPS, FTIR, TGA, and nitrogen-sorption, were employed to understand the role of catalysts’ activity during palm oil upgrading. Findings indicated that alkane hydrocarbons are the major components in liquid products. The presence of excess hydrogen in post reaction gaseous phase proves the hydrogen donation capability of glycerol. Increased reaction time and temperature facilitated the removal of oxygen from palm oil. Nickel-molybdenum on zirconia activated by sulfidation demonstrated higher stability than by reduction activation.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100781"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofuel production from palm oil deoxygenation using nickel-molybdenum on zirconia catalyst using glycerol as a hydrogen donor\",\"authors\":\"Nitchakul Hongloi , Tawsif Rahman , Bijoy Biswas , Farshad Feyzbar-Khalkhali-Nejad , Chaiwat Prapainainar , Peerawat Wongsurakul , Pavlo Ivanchenko , Deb P. Jaisi , Emmanuel Aransiola , Lihua Zhang , Mohamed Ammar , Jonas Baltrusaitis , Paweena Prapainainar , Sushil Adhikari\",\"doi\":\"10.1016/j.ecmx.2024.100781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing demand for renewable energy has generated interest in biofuels as alternatives to fossil fuels. Second-generation biofuels, derived from deoxygenating fats and oils, have garnered a higher level of interest from industry and academia due to their potential for direct replacement of diesel and jet fuels. Palm oil, mostly cultivated in Thailand and composed of C16 and C18 fatty acids, is a primary feedstock sought for biofuel production. Palm oil deoxygenation contains several pathways that may or may not require hydrogen gas. This study aimed to produce biofuels in different fuel ranges, such as gasoline, jet fuel, and diesel, through palm oil deoxygenation using glycerol as a hydrogen source. Glycerol, a low-value byproduct, was used as a hydrogen donor, whereas nickel-molybdenum-supported catalysts were chosen for their high efficiency in deoxygenation and cost-effectiveness. The study investigated the impact of reaction time, temperature, and catalyst activation method on palm oil deoxygenation. Catalyst characterization methods, including XRD, SEM, TEM, XPS, FTIR, TGA, and nitrogen-sorption, were employed to understand the role of catalysts’ activity during palm oil upgrading. Findings indicated that alkane hydrocarbons are the major components in liquid products. The presence of excess hydrogen in post reaction gaseous phase proves the hydrogen donation capability of glycerol. Increased reaction time and temperature facilitated the removal of oxygen from palm oil. Nickel-molybdenum on zirconia activated by sulfidation demonstrated higher stability than by reduction activation.</div></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":\"24 \",\"pages\":\"Article 100781\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524002599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524002599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Biofuel production from palm oil deoxygenation using nickel-molybdenum on zirconia catalyst using glycerol as a hydrogen donor
The growing demand for renewable energy has generated interest in biofuels as alternatives to fossil fuels. Second-generation biofuels, derived from deoxygenating fats and oils, have garnered a higher level of interest from industry and academia due to their potential for direct replacement of diesel and jet fuels. Palm oil, mostly cultivated in Thailand and composed of C16 and C18 fatty acids, is a primary feedstock sought for biofuel production. Palm oil deoxygenation contains several pathways that may or may not require hydrogen gas. This study aimed to produce biofuels in different fuel ranges, such as gasoline, jet fuel, and diesel, through palm oil deoxygenation using glycerol as a hydrogen source. Glycerol, a low-value byproduct, was used as a hydrogen donor, whereas nickel-molybdenum-supported catalysts were chosen for their high efficiency in deoxygenation and cost-effectiveness. The study investigated the impact of reaction time, temperature, and catalyst activation method on palm oil deoxygenation. Catalyst characterization methods, including XRD, SEM, TEM, XPS, FTIR, TGA, and nitrogen-sorption, were employed to understand the role of catalysts’ activity during palm oil upgrading. Findings indicated that alkane hydrocarbons are the major components in liquid products. The presence of excess hydrogen in post reaction gaseous phase proves the hydrogen donation capability of glycerol. Increased reaction time and temperature facilitated the removal of oxygen from palm oil. Nickel-molybdenum on zirconia activated by sulfidation demonstrated higher stability than by reduction activation.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.