普朗特数对受振荡底板调节的雷利-贝纳德对流中传热和流动结构的影响

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Heat and Mass Transfer Pub Date : 2024-11-06 DOI:10.1016/j.ijheatmasstransfer.2024.126380
Zheheng Liu, Pan Jia, Zheng Zhong
{"title":"普朗特数对受振荡底板调节的雷利-贝纳德对流中传热和流动结构的影响","authors":"Zheheng Liu,&nbsp;Pan Jia,&nbsp;Zheng Zhong","doi":"10.1016/j.ijheatmasstransfer.2024.126380","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the Prandtl number effect on Rayleigh–Bénard convection systems modulated by an oscillatory bottom plate. Direct numerical simulations are carried out in a Prandtl number range of <span><math><mrow><mn>0</mn><mo>.</mo><mn>2</mn><mo>≤</mo><mi>P</mi><mi>r</mi><mo>≤</mo><mn>4</mn><mo>.</mo><mn>6</mn></mrow></math></span> and a fixed Rayleigh number of <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span>. The initial drop and subsequent rise evolutionary behaviour of the heat transfer efficiency, characterised by the Nusselt number at the bottom plate <span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>b</mi></mrow></msub></mrow></math></span>, with respect to the characteristic oscillatory velocity <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>s</mi><mi>c</mi></mrow></msub></math></span> is observed in the whole parameter space under consideration. If the oscillatory bottom plate does not induce boundary layer instabilities but thickens the boundary layer only, then one observes a heat transfer reduction, corresponding to a high <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> and a low <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>s</mi><mi>c</mi></mrow></msub></math></span>. If periodic boundary layer instabilities are triggered, then both heat transfer reduction and enhancement are possible. The reduction is generally seen when <span><math><mrow><mi>P</mi><mi>r</mi><mo>≤</mo><mn>1</mn><mo>.</mo><mn>0</mn></mrow></math></span>. Under such circumstance, the velocity boundary layer is embedded in the thermal boundary layer, if the instability induced by a certain <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>s</mi><mi>c</mi></mrow></msub></math></span> is not strong enough to compensate the heat resistance of the thermal boundary layer, one still observes a reduction in spite of the boundary layer instabilities. The enhancement is generally seen for a low <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> and/or a high <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>s</mi><mi>c</mi></mrow></msub></math></span>, in which case violent boundary layer instabilities will be triggered, leading to a sufficient emission of hot plumes. Furthermore, the critical velocity <span><math><msub><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><mi>c</mi></mrow></msub></math></span>, characterising the boundary layer instability, is found to be increasing with <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> as <span><math><mrow><mover><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow><mrow><mo>̄</mo></mrow></mover><mo>∼</mo><mi>P</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msup></mrow></math></span>; and the Reynolds number at the equilibrium state evolves in a similar way as <span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>b</mi></mrow></msub></mrow></math></span>. In the end, modal analyses are performed based on standard and extended proper orthogonal decompositions. Energetic contribution of the modes and modal distributions confirm well the modulation of the oscillatory bottom plate and the induced boundary layer instabilities on the heat transfer and flow structures of the convection system.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"236 ","pages":"Article 126380"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prandtl number effect on heat transfer and flow structures in Rayleigh–Bénard convection modulated by an oscillatory bottom plate\",\"authors\":\"Zheheng Liu,&nbsp;Pan Jia,&nbsp;Zheng Zhong\",\"doi\":\"10.1016/j.ijheatmasstransfer.2024.126380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the Prandtl number effect on Rayleigh–Bénard convection systems modulated by an oscillatory bottom plate. Direct numerical simulations are carried out in a Prandtl number range of <span><math><mrow><mn>0</mn><mo>.</mo><mn>2</mn><mo>≤</mo><mi>P</mi><mi>r</mi><mo>≤</mo><mn>4</mn><mo>.</mo><mn>6</mn></mrow></math></span> and a fixed Rayleigh number of <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span>. The initial drop and subsequent rise evolutionary behaviour of the heat transfer efficiency, characterised by the Nusselt number at the bottom plate <span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>b</mi></mrow></msub></mrow></math></span>, with respect to the characteristic oscillatory velocity <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>s</mi><mi>c</mi></mrow></msub></math></span> is observed in the whole parameter space under consideration. If the oscillatory bottom plate does not induce boundary layer instabilities but thickens the boundary layer only, then one observes a heat transfer reduction, corresponding to a high <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> and a low <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>s</mi><mi>c</mi></mrow></msub></math></span>. If periodic boundary layer instabilities are triggered, then both heat transfer reduction and enhancement are possible. The reduction is generally seen when <span><math><mrow><mi>P</mi><mi>r</mi><mo>≤</mo><mn>1</mn><mo>.</mo><mn>0</mn></mrow></math></span>. Under such circumstance, the velocity boundary layer is embedded in the thermal boundary layer, if the instability induced by a certain <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>s</mi><mi>c</mi></mrow></msub></math></span> is not strong enough to compensate the heat resistance of the thermal boundary layer, one still observes a reduction in spite of the boundary layer instabilities. The enhancement is generally seen for a low <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> and/or a high <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>s</mi><mi>c</mi></mrow></msub></math></span>, in which case violent boundary layer instabilities will be triggered, leading to a sufficient emission of hot plumes. Furthermore, the critical velocity <span><math><msub><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><mi>c</mi></mrow></msub></math></span>, characterising the boundary layer instability, is found to be increasing with <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> as <span><math><mrow><mover><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow><mrow><mo>̄</mo></mrow></mover><mo>∼</mo><mi>P</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msup></mrow></math></span>; and the Reynolds number at the equilibrium state evolves in a similar way as <span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>b</mi></mrow></msub></mrow></math></span>. In the end, modal analyses are performed based on standard and extended proper orthogonal decompositions. Energetic contribution of the modes and modal distributions confirm well the modulation of the oscillatory bottom plate and the induced boundary layer instabilities on the heat transfer and flow structures of the convection system.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"236 \",\"pages\":\"Article 126380\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931024012092\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024012092","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由振荡底板调制的雷利-贝纳德对流系统的普朗特数效应。我们在 0.2≤Pr≤4.6 的普朗特数范围和 Ra=108 的固定雷利数范围内进行了直接数值模拟。在所考虑的整个参数空间内,观察到传热效率的初始下降和随后上升的演变行为,其特征是底板上的努塞尔特数 Nub 与特征振荡速度 Vosc 的关系。如果振荡底板没有引起边界层不稳定,而只是增厚了边界层,那么就会观察到传热量的减少,这与高 Pr 和低 Vosc 相对应。如果触发了周期性的边界层不稳定性,则传热减少和传热增强都是可能的。当 Pr≤1.0 时,传热量通常会减少。在这种情况下,速度边界层嵌入了热边界层,如果某一 Vosc 引发的不稳定性不足以补偿热边界层的热阻,则尽管存在边界层不稳定性,仍可观察到传热量的减少。在低 Pr 和/或高 Vosc 的情况下,通常会出现增强现象,在这种情况下,会引发剧烈的边界层不稳定性,导致热羽流的充分释放。此外,边界层不稳定性的临界速度 V̄c 随着 Pr 的增加而增加,Vc̄∼Pr0.5;平衡状态下的雷诺数的变化与 Nub 相似。最后,根据标准和扩展的适当正交分解进行了模态分析。模态的能量贡献和模态分布很好地证实了振荡底板和诱导边界层不稳定性对对流系统传热和流动结构的调节作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prandtl number effect on heat transfer and flow structures in Rayleigh–Bénard convection modulated by an oscillatory bottom plate
In this paper, we study the Prandtl number effect on Rayleigh–Bénard convection systems modulated by an oscillatory bottom plate. Direct numerical simulations are carried out in a Prandtl number range of 0.2Pr4.6 and a fixed Rayleigh number of Ra=108. The initial drop and subsequent rise evolutionary behaviour of the heat transfer efficiency, characterised by the Nusselt number at the bottom plate Nub, with respect to the characteristic oscillatory velocity Vosc is observed in the whole parameter space under consideration. If the oscillatory bottom plate does not induce boundary layer instabilities but thickens the boundary layer only, then one observes a heat transfer reduction, corresponding to a high Pr and a low Vosc. If periodic boundary layer instabilities are triggered, then both heat transfer reduction and enhancement are possible. The reduction is generally seen when Pr1.0. Under such circumstance, the velocity boundary layer is embedded in the thermal boundary layer, if the instability induced by a certain Vosc is not strong enough to compensate the heat resistance of the thermal boundary layer, one still observes a reduction in spite of the boundary layer instabilities. The enhancement is generally seen for a low Pr and/or a high Vosc, in which case violent boundary layer instabilities will be triggered, leading to a sufficient emission of hot plumes. Furthermore, the critical velocity V̄c, characterising the boundary layer instability, is found to be increasing with Pr as Vc̄Pr0.5; and the Reynolds number at the equilibrium state evolves in a similar way as Nub. In the end, modal analyses are performed based on standard and extended proper orthogonal decompositions. Energetic contribution of the modes and modal distributions confirm well the modulation of the oscillatory bottom plate and the induced boundary layer instabilities on the heat transfer and flow structures of the convection system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
期刊最新文献
Particle sedimentation in cored-wire-arc directed energy deposition: Particle migration and suppression mechanism via ultrasonic vibration The effects of rolling and heaving on flow boiling heat transfer in a 3 × 3 rod bundle channel in a natural circulation system Reynolds-averaged Navier-Stokes simulations of opposing flow turbulent mixed convection heat transfer in a vertical tube Gas slip flow and heat transfer over a semi-confined cylinder in proximity to a solid wall Ingress wave model with purge-mainstream density ratio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1