带有不饱和聚酯和乙烯基酯基材的真空灌注玻璃纤维复合材料的冻融耐久性

IF 7.4 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Construction and Building Materials Pub Date : 2024-11-15 DOI:10.1016/j.conbuildmat.2024.139037
Tarikul Hasan , João R. Correia , Mário Garrido , Francisco Soares , Susana Cabral-Fonseca , Marco Jorge , José Sena-Cruz
{"title":"带有不饱和聚酯和乙烯基酯基材的真空灌注玻璃纤维复合材料的冻融耐久性","authors":"Tarikul Hasan ,&nbsp;João R. Correia ,&nbsp;Mário Garrido ,&nbsp;Francisco Soares ,&nbsp;Susana Cabral-Fonseca ,&nbsp;Marco Jorge ,&nbsp;José Sena-Cruz","doi":"10.1016/j.conbuildmat.2024.139037","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an experimental study about the effects of freeze-thaw cycles (FTC) on the mechanical and thermomechanical properties of glass-fibre reinforced polymer composite laminates produced by vacuum infusion using two different polymer resins: unsaturated polyester (UP) and vinyl ester (VE). Following preconditioning in distilled water for 30 days at 20 °C, the composites were subjected to 100, 200 and 300 FTC, with temperature ranging from −20 °C to 23 °C. After the preconditioning and each ageing period, the mechanical properties of the composites were assessed through tension, compression, flexure, in-plane shear and interlaminar shear tests, as well as DMA, which were complemented by FTIR analysis and SEM observations. The results obtained indicate a slight-to-moderate reduction of glass transition temperature and mechanical properties, especially of flexural strength (up to 29 %) and compressive strength (up to 16 %). These reductions were partially reversible upon drying, highlighting relevant moisture-induced plasticization effects. On the other hand, no clear evidence of significant hydrolysis or fibre-matrix debonding was identified from respectively FTIR and SEM. Overall, the VE composite exhibited better overall performance than the UP composite. It was not possible to identify clear differences in the freeze-thaw durability performance of the vacuum infused composites tested in this study compared to pultruded composites reported in the literature.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"455 ","pages":"Article 139037"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Freeze-thaw durability of vacuum infused glass fibre composites with unsaturated polyester and vinyl ester matrices\",\"authors\":\"Tarikul Hasan ,&nbsp;João R. Correia ,&nbsp;Mário Garrido ,&nbsp;Francisco Soares ,&nbsp;Susana Cabral-Fonseca ,&nbsp;Marco Jorge ,&nbsp;José Sena-Cruz\",\"doi\":\"10.1016/j.conbuildmat.2024.139037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an experimental study about the effects of freeze-thaw cycles (FTC) on the mechanical and thermomechanical properties of glass-fibre reinforced polymer composite laminates produced by vacuum infusion using two different polymer resins: unsaturated polyester (UP) and vinyl ester (VE). Following preconditioning in distilled water for 30 days at 20 °C, the composites were subjected to 100, 200 and 300 FTC, with temperature ranging from −20 °C to 23 °C. After the preconditioning and each ageing period, the mechanical properties of the composites were assessed through tension, compression, flexure, in-plane shear and interlaminar shear tests, as well as DMA, which were complemented by FTIR analysis and SEM observations. The results obtained indicate a slight-to-moderate reduction of glass transition temperature and mechanical properties, especially of flexural strength (up to 29 %) and compressive strength (up to 16 %). These reductions were partially reversible upon drying, highlighting relevant moisture-induced plasticization effects. On the other hand, no clear evidence of significant hydrolysis or fibre-matrix debonding was identified from respectively FTIR and SEM. Overall, the VE composite exhibited better overall performance than the UP composite. It was not possible to identify clear differences in the freeze-thaw durability performance of the vacuum infused composites tested in this study compared to pultruded composites reported in the literature.</div></div>\",\"PeriodicalId\":288,\"journal\":{\"name\":\"Construction and Building Materials\",\"volume\":\"455 \",\"pages\":\"Article 139037\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction and Building Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950061824041795\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824041795","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一项关于冻融循环(FTC)对玻璃纤维增强聚合物复合材料层压板机械性能和热机械性能影响的实验研究,该层压板是使用两种不同的聚合物树脂(不饱和聚酯(UP)和乙烯基酯(VE))通过真空灌注生产的。复合材料在 20 °C 的蒸馏水中预处理 30 天后,分别进行了 100、200 和 300 次 FTC,温度范围为 -20 °C 至 23 °C。在预处理和每个老化期结束后,通过拉伸、压缩、弯曲、平面内剪切和层间剪切试验以及 DMA 评估了复合材料的机械性能,并进行了傅立叶变换红外分析和扫描电镜观察。研究结果表明,玻璃化转变温度和机械性能,尤其是抗弯强度(最高达 29%)和抗压强度(最高达 16%)略有下降。这些降低在干燥后是部分可逆的,凸显了相关的湿气诱导塑化效应。另一方面,傅立叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)均未发现明显的水解或纤维基质脱粘迹象。总体而言,VE 复合材料的整体性能优于 UP 复合材料。与文献报道的拉挤复合材料相比,本研究中测试的真空灌注复合材料在冻融耐久性能方面没有明显差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Freeze-thaw durability of vacuum infused glass fibre composites with unsaturated polyester and vinyl ester matrices
This paper presents an experimental study about the effects of freeze-thaw cycles (FTC) on the mechanical and thermomechanical properties of glass-fibre reinforced polymer composite laminates produced by vacuum infusion using two different polymer resins: unsaturated polyester (UP) and vinyl ester (VE). Following preconditioning in distilled water for 30 days at 20 °C, the composites were subjected to 100, 200 and 300 FTC, with temperature ranging from −20 °C to 23 °C. After the preconditioning and each ageing period, the mechanical properties of the composites were assessed through tension, compression, flexure, in-plane shear and interlaminar shear tests, as well as DMA, which were complemented by FTIR analysis and SEM observations. The results obtained indicate a slight-to-moderate reduction of glass transition temperature and mechanical properties, especially of flexural strength (up to 29 %) and compressive strength (up to 16 %). These reductions were partially reversible upon drying, highlighting relevant moisture-induced plasticization effects. On the other hand, no clear evidence of significant hydrolysis or fibre-matrix debonding was identified from respectively FTIR and SEM. Overall, the VE composite exhibited better overall performance than the UP composite. It was not possible to identify clear differences in the freeze-thaw durability performance of the vacuum infused composites tested in this study compared to pultruded composites reported in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Construction and Building Materials
Construction and Building Materials 工程技术-材料科学:综合
CiteScore
13.80
自引率
21.60%
发文量
3632
审稿时长
82 days
期刊介绍: Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged. Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.
期刊最新文献
Durability against cyclic wetting-drying of cement-stabilized loess subgrade for railway in tropical semi-arid regions Lightweight, high-strength, thermal- and sound-insulating reed scraps/portland cement composite using extruded resin particles Concrete mix design: Optimizing recycled asphalt pavement in Portland cement concrete A multidisciplinary evaluation of mixtures of municipal solid waste incineration bottom ash and mine tailings for sustainable geotechnical solutions Dynamic splitting tensile properties of crumb rubber modified ultra-high performance engineered cementitious composites (UHP-ECC)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1