Xueqi Wang , Mulian Zheng , Chenxu Gong , Hongyin Li , Sai Ma , Jinghan Xu
{"title":"再生复合密封材料的混合比例优化和耐久性评估","authors":"Xueqi Wang , Mulian Zheng , Chenxu Gong , Hongyin Li , Sai Ma , Jinghan Xu","doi":"10.1016/j.conbuildmat.2024.139208","DOIUrl":null,"url":null,"abstract":"<div><div>Composite seal (CS) is effective in restoring pavement surface function and prolonging the service life, employing a double-layer structure composed of micro-surfacing and chip seal. Rejuvenating composite seal (RCS) applying rejuvenating agents to the chip seal is dedicated to revitalizing the aged asphalt of the original pavement surface. However, limited studies have focused on enhancing interlayer and temperature performance through optimizing mixture ratios. In this study, a modified emulsified asphalt with self-developed rejuvenating agent was applied, and the orthogonal test considering interlayer shear resistance and high temperature stability was conducted for initially mixture proportion of RCS, then the preliminary ratio was optimized. The proportion for micro-surfacing was determined by mixing test, wet track abrasion test, and loaded wheel sticking sand test. Simultaneously, the recommended asphalt spraying amount of rejuvenating chip seal was determined by utilizing accelerated loading abrasion test. In view of the abrasion resistance, interlayer adhesion, and cracking resistance, the coupled effects of aggregate size and paving rate of rejuvenating chip seal were studied. Long-term wet track abrasion test, freeze-thaw cycle test, and UV aging test were conducted to evaluate the durability. The results show that the asphalt-aggregate ratio of micro-surfacing is 7.1 %. For 4.75 mm or 7 mm rejuvenating chip seal, the recommended asphalt spraying amount is 1.5 kg/m<sup>2</sup> or 1.6 kg/m<sup>2</sup>, and the range of paving rate is 60 %–70 %. For 9.5 mm or 13.2 mm rejuvenating chip seal, the results are 1.7 kg/m<sup>2</sup> or 1.8 kg/m<sup>2</sup>, and 80 %–90 %, respectively. Under the conditions, RCS has better interlayer shear resistance and temperature performance, which can improve durability.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"455 ","pages":"Article 139208"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixture proportion optimization and durability evaluation of rejuvenating composite seal\",\"authors\":\"Xueqi Wang , Mulian Zheng , Chenxu Gong , Hongyin Li , Sai Ma , Jinghan Xu\",\"doi\":\"10.1016/j.conbuildmat.2024.139208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Composite seal (CS) is effective in restoring pavement surface function and prolonging the service life, employing a double-layer structure composed of micro-surfacing and chip seal. Rejuvenating composite seal (RCS) applying rejuvenating agents to the chip seal is dedicated to revitalizing the aged asphalt of the original pavement surface. However, limited studies have focused on enhancing interlayer and temperature performance through optimizing mixture ratios. In this study, a modified emulsified asphalt with self-developed rejuvenating agent was applied, and the orthogonal test considering interlayer shear resistance and high temperature stability was conducted for initially mixture proportion of RCS, then the preliminary ratio was optimized. The proportion for micro-surfacing was determined by mixing test, wet track abrasion test, and loaded wheel sticking sand test. Simultaneously, the recommended asphalt spraying amount of rejuvenating chip seal was determined by utilizing accelerated loading abrasion test. In view of the abrasion resistance, interlayer adhesion, and cracking resistance, the coupled effects of aggregate size and paving rate of rejuvenating chip seal were studied. Long-term wet track abrasion test, freeze-thaw cycle test, and UV aging test were conducted to evaluate the durability. The results show that the asphalt-aggregate ratio of micro-surfacing is 7.1 %. For 4.75 mm or 7 mm rejuvenating chip seal, the recommended asphalt spraying amount is 1.5 kg/m<sup>2</sup> or 1.6 kg/m<sup>2</sup>, and the range of paving rate is 60 %–70 %. For 9.5 mm or 13.2 mm rejuvenating chip seal, the results are 1.7 kg/m<sup>2</sup> or 1.8 kg/m<sup>2</sup>, and 80 %–90 %, respectively. Under the conditions, RCS has better interlayer shear resistance and temperature performance, which can improve durability.</div></div>\",\"PeriodicalId\":288,\"journal\":{\"name\":\"Construction and Building Materials\",\"volume\":\"455 \",\"pages\":\"Article 139208\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction and Building Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950061824043502\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824043502","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Mixture proportion optimization and durability evaluation of rejuvenating composite seal
Composite seal (CS) is effective in restoring pavement surface function and prolonging the service life, employing a double-layer structure composed of micro-surfacing and chip seal. Rejuvenating composite seal (RCS) applying rejuvenating agents to the chip seal is dedicated to revitalizing the aged asphalt of the original pavement surface. However, limited studies have focused on enhancing interlayer and temperature performance through optimizing mixture ratios. In this study, a modified emulsified asphalt with self-developed rejuvenating agent was applied, and the orthogonal test considering interlayer shear resistance and high temperature stability was conducted for initially mixture proportion of RCS, then the preliminary ratio was optimized. The proportion for micro-surfacing was determined by mixing test, wet track abrasion test, and loaded wheel sticking sand test. Simultaneously, the recommended asphalt spraying amount of rejuvenating chip seal was determined by utilizing accelerated loading abrasion test. In view of the abrasion resistance, interlayer adhesion, and cracking resistance, the coupled effects of aggregate size and paving rate of rejuvenating chip seal were studied. Long-term wet track abrasion test, freeze-thaw cycle test, and UV aging test were conducted to evaluate the durability. The results show that the asphalt-aggregate ratio of micro-surfacing is 7.1 %. For 4.75 mm or 7 mm rejuvenating chip seal, the recommended asphalt spraying amount is 1.5 kg/m2 or 1.6 kg/m2, and the range of paving rate is 60 %–70 %. For 9.5 mm or 13.2 mm rejuvenating chip seal, the results are 1.7 kg/m2 or 1.8 kg/m2, and 80 %–90 %, respectively. Under the conditions, RCS has better interlayer shear resistance and temperature performance, which can improve durability.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.