Suniya Shahzad, Faiza Jan Iftikhar, Afzal Shah, Hassan Abdur Rehman and Emmanuel Iwuoha
{"title":"可穿戴电化学传感器互联网的新型接口","authors":"Suniya Shahzad, Faiza Jan Iftikhar, Afzal Shah, Hassan Abdur Rehman and Emmanuel Iwuoha","doi":"10.1039/D4RA07165D","DOIUrl":null,"url":null,"abstract":"<p >The integration of wearable devices, the Internet of Things (IoT), and advanced sensing platforms implies a significant paradigm shift in technological innovations and human interactions. The IoT technology allows continuous monitoring in real time. Thus, Internet of Wearables has made remarkable strides, especially in the field of medical monitoring. IoT-enabled wearable systems assist in early disease detection that facilitates personalized interventions and proactive healthcare management, thereby empowering individuals to take charge of their wellbeing. Until now, physical sensors have been successfully integrated into wearable devices for physical activity monitoring. However, obtaining biochemical information poses challenges in the contexts of fabrication compatibility and shorter operation lifetimes. IoT-based electrochemical wearable sensors allow real-time acquisition of data and interpretation of biomolecular information corresponding to biomarkers, viruses, bacteria and metabolites, extending the diagnostic capabilities beyond physical activity tracking. Thus, critical heath parameters such as glucose levels, blood pressure and cardiac rhythm may be monitored by these devices regardless of location and time. This work presents versatile electrochemical sensing devices across different disciplines, including but not limited to sports, safety and wellbeing by using IoT. It also discusses the detection principles for biomarkers and biofluid monitoring, and their integration into devices and advancements in sensing interfaces.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 49","pages":" 36713-36732"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra07165d?page=search","citationCount":"0","resultStr":"{\"title\":\"Novel interfaces for internet of wearable electrochemical sensors\",\"authors\":\"Suniya Shahzad, Faiza Jan Iftikhar, Afzal Shah, Hassan Abdur Rehman and Emmanuel Iwuoha\",\"doi\":\"10.1039/D4RA07165D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The integration of wearable devices, the Internet of Things (IoT), and advanced sensing platforms implies a significant paradigm shift in technological innovations and human interactions. The IoT technology allows continuous monitoring in real time. Thus, Internet of Wearables has made remarkable strides, especially in the field of medical monitoring. IoT-enabled wearable systems assist in early disease detection that facilitates personalized interventions and proactive healthcare management, thereby empowering individuals to take charge of their wellbeing. Until now, physical sensors have been successfully integrated into wearable devices for physical activity monitoring. However, obtaining biochemical information poses challenges in the contexts of fabrication compatibility and shorter operation lifetimes. IoT-based electrochemical wearable sensors allow real-time acquisition of data and interpretation of biomolecular information corresponding to biomarkers, viruses, bacteria and metabolites, extending the diagnostic capabilities beyond physical activity tracking. Thus, critical heath parameters such as glucose levels, blood pressure and cardiac rhythm may be monitored by these devices regardless of location and time. This work presents versatile electrochemical sensing devices across different disciplines, including but not limited to sports, safety and wellbeing by using IoT. It also discusses the detection principles for biomarkers and biofluid monitoring, and their integration into devices and advancements in sensing interfaces.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 49\",\"pages\":\" 36713-36732\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra07165d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07165d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07165d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Novel interfaces for internet of wearable electrochemical sensors
The integration of wearable devices, the Internet of Things (IoT), and advanced sensing platforms implies a significant paradigm shift in technological innovations and human interactions. The IoT technology allows continuous monitoring in real time. Thus, Internet of Wearables has made remarkable strides, especially in the field of medical monitoring. IoT-enabled wearable systems assist in early disease detection that facilitates personalized interventions and proactive healthcare management, thereby empowering individuals to take charge of their wellbeing. Until now, physical sensors have been successfully integrated into wearable devices for physical activity monitoring. However, obtaining biochemical information poses challenges in the contexts of fabrication compatibility and shorter operation lifetimes. IoT-based electrochemical wearable sensors allow real-time acquisition of data and interpretation of biomolecular information corresponding to biomarkers, viruses, bacteria and metabolites, extending the diagnostic capabilities beyond physical activity tracking. Thus, critical heath parameters such as glucose levels, blood pressure and cardiac rhythm may be monitored by these devices regardless of location and time. This work presents versatile electrochemical sensing devices across different disciplines, including but not limited to sports, safety and wellbeing by using IoT. It also discusses the detection principles for biomarkers and biofluid monitoring, and their integration into devices and advancements in sensing interfaces.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.