Juan Carlos Alvarado-Pérez, Miguel Angel Garcia, Domenec Puig
{"title":"通过神经嵌入的集合学习降低多维结构化和非结构化数据集的维度","authors":"Juan Carlos Alvarado-Pérez, Miguel Angel Garcia, Domenec Puig","doi":"10.1002/aisy.202400178","DOIUrl":null,"url":null,"abstract":"<p>Dimension reduction aims to project a high-dimensional dataset into a low-dimensional space. It tries to preserve the topological relationships among the original data points and/or induce clusters. NetDRm, an online dimensionality reduction method based on neural ensemble learning that integrates different dimension reduction methods in a synergistic way, is introduced. NetDRm is designed for datasets of multidimensional points that can be either structured (e.g., images) or unstructured (e.g., point clouds, tabular data). It starts by training a collection of deep residual encoders that learn the embeddings induced by multiple dimension reduction methods applied to the input dataset. Subsequently, a dense neural network integrates the generated encoders by emphasizing topological preservation or cluster induction. Experiments conducted on widely used multidimensional datasets (point-cloud manifolds, image datasets, tabular record datasets) show that the proposed method yields better results in terms of topological preservation (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mtext>NX</mtext>\n </mrow>\n </msub>\n </mrow>\n <annotation>$R_{\\text{NX}}$</annotation>\n </semantics></math> curves), cluster induction (<i>V</i> measure), and classification accuracy than the most relevant dimension reduction methods.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400178","citationCount":"0","resultStr":"{\"title\":\"Dimension Reduction of Multidimensional Structured and Unstructured Datasets through Ensemble Learning of Neural Embeddings\",\"authors\":\"Juan Carlos Alvarado-Pérez, Miguel Angel Garcia, Domenec Puig\",\"doi\":\"10.1002/aisy.202400178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dimension reduction aims to project a high-dimensional dataset into a low-dimensional space. It tries to preserve the topological relationships among the original data points and/or induce clusters. NetDRm, an online dimensionality reduction method based on neural ensemble learning that integrates different dimension reduction methods in a synergistic way, is introduced. NetDRm is designed for datasets of multidimensional points that can be either structured (e.g., images) or unstructured (e.g., point clouds, tabular data). It starts by training a collection of deep residual encoders that learn the embeddings induced by multiple dimension reduction methods applied to the input dataset. Subsequently, a dense neural network integrates the generated encoders by emphasizing topological preservation or cluster induction. Experiments conducted on widely used multidimensional datasets (point-cloud manifolds, image datasets, tabular record datasets) show that the proposed method yields better results in terms of topological preservation (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mtext>NX</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$R_{\\\\text{NX}}$</annotation>\\n </semantics></math> curves), cluster induction (<i>V</i> measure), and classification accuracy than the most relevant dimension reduction methods.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 11\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400178\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Dimension Reduction of Multidimensional Structured and Unstructured Datasets through Ensemble Learning of Neural Embeddings
Dimension reduction aims to project a high-dimensional dataset into a low-dimensional space. It tries to preserve the topological relationships among the original data points and/or induce clusters. NetDRm, an online dimensionality reduction method based on neural ensemble learning that integrates different dimension reduction methods in a synergistic way, is introduced. NetDRm is designed for datasets of multidimensional points that can be either structured (e.g., images) or unstructured (e.g., point clouds, tabular data). It starts by training a collection of deep residual encoders that learn the embeddings induced by multiple dimension reduction methods applied to the input dataset. Subsequently, a dense neural network integrates the generated encoders by emphasizing topological preservation or cluster induction. Experiments conducted on widely used multidimensional datasets (point-cloud manifolds, image datasets, tabular record datasets) show that the proposed method yields better results in terms of topological preservation ( curves), cluster induction (V measure), and classification accuracy than the most relevant dimension reduction methods.