Fangshun Zhu, Suyuan Zhang, Qingfeng Zhang, Kuanjie Ma, Jun Wu, Yurong Cai
{"title":"用于快速储存钠离子的富缺陷 In2S3/CoS2 异质结构","authors":"Fangshun Zhu, Suyuan Zhang, Qingfeng Zhang, Kuanjie Ma, Jun Wu, Yurong Cai","doi":"10.1016/j.electacta.2024.145383","DOIUrl":null,"url":null,"abstract":"Aiming to accelerate sodium-ion transport kinetics and improve electrochemical cyclability of batteries, an In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> bimetallic sulfide heterostructure was synthesized as anodes of sodium-ion batteries (SIBs) in this paper by a feasible ion exchange and subsequent hydrothermal vulcanization technique based on a cobalt metal-organic skeleton (ZIF-67) precursor. As-prepared In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> composite exhibited an excellent rate capability of 453.8 mAh g<sup>-1</sup> at 10 A g<sup>-1</sup> and outstanding cyclability of 464.06 mAh g<sup>-1</sup> after 600 cycles at 2 A g<sup>-1</sup>. The built-in electric filed between heterogeneous interface of In<sub>2</sub>S<sub>3</sub> and CoS<sub>2</sub> plays a dominant contribution on improvement of electronic conductivity and charge transfer kinetics. Beyond that abundant defects derived from ion exchange and nanocrystallization of composite particles also have a positive synergistic effect on inducing additional active centers for adsorption of Na<sup>+</sup> and shortening ion transport distance for further accelerating reaction kinetics. Based on exploring conversion and alloying mechanism of In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> composite via <em>ex situ</em> XRD and TEM, high-performance SIBs with heterostructure bimetallic sulfide anodes may be a prospective strategy.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"248 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect-Rich In2S3/CoS2 Heterostructure for Rapid Storage of Sodium Ions\",\"authors\":\"Fangshun Zhu, Suyuan Zhang, Qingfeng Zhang, Kuanjie Ma, Jun Wu, Yurong Cai\",\"doi\":\"10.1016/j.electacta.2024.145383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming to accelerate sodium-ion transport kinetics and improve electrochemical cyclability of batteries, an In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> bimetallic sulfide heterostructure was synthesized as anodes of sodium-ion batteries (SIBs) in this paper by a feasible ion exchange and subsequent hydrothermal vulcanization technique based on a cobalt metal-organic skeleton (ZIF-67) precursor. As-prepared In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> composite exhibited an excellent rate capability of 453.8 mAh g<sup>-1</sup> at 10 A g<sup>-1</sup> and outstanding cyclability of 464.06 mAh g<sup>-1</sup> after 600 cycles at 2 A g<sup>-1</sup>. The built-in electric filed between heterogeneous interface of In<sub>2</sub>S<sub>3</sub> and CoS<sub>2</sub> plays a dominant contribution on improvement of electronic conductivity and charge transfer kinetics. Beyond that abundant defects derived from ion exchange and nanocrystallization of composite particles also have a positive synergistic effect on inducing additional active centers for adsorption of Na<sup>+</sup> and shortening ion transport distance for further accelerating reaction kinetics. Based on exploring conversion and alloying mechanism of In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> composite via <em>ex situ</em> XRD and TEM, high-performance SIBs with heterostructure bimetallic sulfide anodes may be a prospective strategy.\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"248 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.electacta.2024.145383\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145383","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
为了加速钠离子传输动力学和提高电池的电化学循环能力,本文以钴金属有机骨架(ZIF-67)为前驱体,通过可行的离子交换和后续水热硫化技术合成了 In2S3/CoS2 双金属硫化物异质结构,作为钠离子电池(SIB)的阳极。所制备的 In2S3/CoS2 复合材料在 10 A g-1 的条件下具有 453.8 mAh g-1 的优异速率能力,在 2 A g-1 的条件下循环 600 次后具有 464.06 mAh g-1 的出色循环能力。In2S3 和 CoS2 异质界面之间的内置电场对电子传导性和电荷转移动力学的改善起到了主导作用。此外,复合粒子的离子交换和纳米结晶产生的丰富缺陷也具有积极的协同作用,可诱导额外的活性中心吸附 Na+,并缩短离子传输距离,从而进一步加速反应动力学。在通过原位 XRD 和 TEM 探索 In2S3/CoS2 复合材料的转化和合金化机理的基础上,采用异质结构双金属硫化物阳极的高性能 SIB 可能是一种具有前景的策略。
Defect-Rich In2S3/CoS2 Heterostructure for Rapid Storage of Sodium Ions
Aiming to accelerate sodium-ion transport kinetics and improve electrochemical cyclability of batteries, an In2S3/CoS2 bimetallic sulfide heterostructure was synthesized as anodes of sodium-ion batteries (SIBs) in this paper by a feasible ion exchange and subsequent hydrothermal vulcanization technique based on a cobalt metal-organic skeleton (ZIF-67) precursor. As-prepared In2S3/CoS2 composite exhibited an excellent rate capability of 453.8 mAh g-1 at 10 A g-1 and outstanding cyclability of 464.06 mAh g-1 after 600 cycles at 2 A g-1. The built-in electric filed between heterogeneous interface of In2S3 and CoS2 plays a dominant contribution on improvement of electronic conductivity and charge transfer kinetics. Beyond that abundant defects derived from ion exchange and nanocrystallization of composite particles also have a positive synergistic effect on inducing additional active centers for adsorption of Na+ and shortening ion transport distance for further accelerating reaction kinetics. Based on exploring conversion and alloying mechanism of In2S3/CoS2 composite via ex situ XRD and TEM, high-performance SIBs with heterostructure bimetallic sulfide anodes may be a prospective strategy.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.