用于快速储存钠离子的富缺陷 In2S3/CoS2 异质结构

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-11-18 DOI:10.1016/j.electacta.2024.145383
Fangshun Zhu, Suyuan Zhang, Qingfeng Zhang, Kuanjie Ma, Jun Wu, Yurong Cai
{"title":"用于快速储存钠离子的富缺陷 In2S3/CoS2 异质结构","authors":"Fangshun Zhu, Suyuan Zhang, Qingfeng Zhang, Kuanjie Ma, Jun Wu, Yurong Cai","doi":"10.1016/j.electacta.2024.145383","DOIUrl":null,"url":null,"abstract":"Aiming to accelerate sodium-ion transport kinetics and improve electrochemical cyclability of batteries, an In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> bimetallic sulfide heterostructure was synthesized as anodes of sodium-ion batteries (SIBs) in this paper by a feasible ion exchange and subsequent hydrothermal vulcanization technique based on a cobalt metal-organic skeleton (ZIF-67) precursor. As-prepared In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> composite exhibited an excellent rate capability of 453.8 mAh g<sup>-1</sup> at 10 A g<sup>-1</sup> and outstanding cyclability of 464.06 mAh g<sup>-1</sup> after 600 cycles at 2 A g<sup>-1</sup>. The built-in electric filed between heterogeneous interface of In<sub>2</sub>S<sub>3</sub> and CoS<sub>2</sub> plays a dominant contribution on improvement of electronic conductivity and charge transfer kinetics. Beyond that abundant defects derived from ion exchange and nanocrystallization of composite particles also have a positive synergistic effect on inducing additional active centers for adsorption of Na<sup>+</sup> and shortening ion transport distance for further accelerating reaction kinetics. Based on exploring conversion and alloying mechanism of In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> composite via <em>ex situ</em> XRD and TEM, high-performance SIBs with heterostructure bimetallic sulfide anodes may be a prospective strategy.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"248 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect-Rich In2S3/CoS2 Heterostructure for Rapid Storage of Sodium Ions\",\"authors\":\"Fangshun Zhu, Suyuan Zhang, Qingfeng Zhang, Kuanjie Ma, Jun Wu, Yurong Cai\",\"doi\":\"10.1016/j.electacta.2024.145383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming to accelerate sodium-ion transport kinetics and improve electrochemical cyclability of batteries, an In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> bimetallic sulfide heterostructure was synthesized as anodes of sodium-ion batteries (SIBs) in this paper by a feasible ion exchange and subsequent hydrothermal vulcanization technique based on a cobalt metal-organic skeleton (ZIF-67) precursor. As-prepared In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> composite exhibited an excellent rate capability of 453.8 mAh g<sup>-1</sup> at 10 A g<sup>-1</sup> and outstanding cyclability of 464.06 mAh g<sup>-1</sup> after 600 cycles at 2 A g<sup>-1</sup>. The built-in electric filed between heterogeneous interface of In<sub>2</sub>S<sub>3</sub> and CoS<sub>2</sub> plays a dominant contribution on improvement of electronic conductivity and charge transfer kinetics. Beyond that abundant defects derived from ion exchange and nanocrystallization of composite particles also have a positive synergistic effect on inducing additional active centers for adsorption of Na<sup>+</sup> and shortening ion transport distance for further accelerating reaction kinetics. Based on exploring conversion and alloying mechanism of In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> composite via <em>ex situ</em> XRD and TEM, high-performance SIBs with heterostructure bimetallic sulfide anodes may be a prospective strategy.\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"248 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.electacta.2024.145383\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145383","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

为了加速钠离子传输动力学和提高电池的电化学循环能力,本文以钴金属有机骨架(ZIF-67)为前驱体,通过可行的离子交换和后续水热硫化技术合成了 In2S3/CoS2 双金属硫化物异质结构,作为钠离子电池(SIB)的阳极。所制备的 In2S3/CoS2 复合材料在 10 A g-1 的条件下具有 453.8 mAh g-1 的优异速率能力,在 2 A g-1 的条件下循环 600 次后具有 464.06 mAh g-1 的出色循环能力。In2S3 和 CoS2 异质界面之间的内置电场对电子传导性和电荷转移动力学的改善起到了主导作用。此外,复合粒子的离子交换和纳米结晶产生的丰富缺陷也具有积极的协同作用,可诱导额外的活性中心吸附 Na+,并缩短离子传输距离,从而进一步加速反应动力学。在通过原位 XRD 和 TEM 探索 In2S3/CoS2 复合材料的转化和合金化机理的基础上,采用异质结构双金属硫化物阳极的高性能 SIB 可能是一种具有前景的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defect-Rich In2S3/CoS2 Heterostructure for Rapid Storage of Sodium Ions
Aiming to accelerate sodium-ion transport kinetics and improve electrochemical cyclability of batteries, an In2S3/CoS2 bimetallic sulfide heterostructure was synthesized as anodes of sodium-ion batteries (SIBs) in this paper by a feasible ion exchange and subsequent hydrothermal vulcanization technique based on a cobalt metal-organic skeleton (ZIF-67) precursor. As-prepared In2S3/CoS2 composite exhibited an excellent rate capability of 453.8 mAh g-1 at 10 A g-1 and outstanding cyclability of 464.06 mAh g-1 after 600 cycles at 2 A g-1. The built-in electric filed between heterogeneous interface of In2S3 and CoS2 plays a dominant contribution on improvement of electronic conductivity and charge transfer kinetics. Beyond that abundant defects derived from ion exchange and nanocrystallization of composite particles also have a positive synergistic effect on inducing additional active centers for adsorption of Na+ and shortening ion transport distance for further accelerating reaction kinetics. Based on exploring conversion and alloying mechanism of In2S3/CoS2 composite via ex situ XRD and TEM, high-performance SIBs with heterostructure bimetallic sulfide anodes may be a prospective strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
One-pot Synthesis of Heteroatom-rich Anthraquinone-based Benzoxazine-linked Porous organic polymers for high performance supercapacitors Tailoring the Electronic Conductivity of Coating Layer on the Composite Separator for Li Metal Anode Study on the treatment of carbon black for slurry electrodes of all-iron redox flow batteries Unveiling Manganese Malate as an Electrode Material for Supercapacitors Electrochemical Synthesis and Carbon Doping of Nanostructured Iron Fluorides from the Selection of Metal Current Collectors in Lithium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1