{"title":"通过学习时空语义进行自监督血管轨迹分割","authors":"Rui Zhang, Haitao Ren, Zhipei Yu, Zhu Xiao, Kezhong Liu, Hongbo Jiang","doi":"10.1049/itr2.12570","DOIUrl":null,"url":null,"abstract":"<p>The study of vessel trajectories (VTs) holds significant benefits for marine route management and resource development. VT segmentation serves as a foundation for extracting vessel motion primitives and enables analysis of vessel manoeuvring habits and behavioural intentions. However, existing methods relying on predefined behaviour patterns face high labelling costs, which hinder accurate pattern recognition. This paper proposes a self-supervised vessel trajectory segmentation method (SS-VTS), which segments VTs based on their inherent spatio-temporal semantics. SS-VTS adaptively divides VTs into cells of optimal size. Then, it extracts split points on different semantic levels from the multi-dimensional feature sequence of the VTs using self-supervised learning. Finally, spatio-temporal distance fusion module is performed on split points to determine change points and obtain VT segments with multiple semantics. Experiments on a real automatic identification system datasets show that SS-VTS achieves state-of-the-art segmentation results compared to seven baseline methods.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 11","pages":"2242-2254"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12570","citationCount":"0","resultStr":"{\"title\":\"Self-supervised vessel trajectory segmentation via learning spatio-temporal semantics\",\"authors\":\"Rui Zhang, Haitao Ren, Zhipei Yu, Zhu Xiao, Kezhong Liu, Hongbo Jiang\",\"doi\":\"10.1049/itr2.12570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study of vessel trajectories (VTs) holds significant benefits for marine route management and resource development. VT segmentation serves as a foundation for extracting vessel motion primitives and enables analysis of vessel manoeuvring habits and behavioural intentions. However, existing methods relying on predefined behaviour patterns face high labelling costs, which hinder accurate pattern recognition. This paper proposes a self-supervised vessel trajectory segmentation method (SS-VTS), which segments VTs based on their inherent spatio-temporal semantics. SS-VTS adaptively divides VTs into cells of optimal size. Then, it extracts split points on different semantic levels from the multi-dimensional feature sequence of the VTs using self-supervised learning. Finally, spatio-temporal distance fusion module is performed on split points to determine change points and obtain VT segments with multiple semantics. Experiments on a real automatic identification system datasets show that SS-VTS achieves state-of-the-art segmentation results compared to seven baseline methods.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 11\",\"pages\":\"2242-2254\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12570\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12570\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12570","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Self-supervised vessel trajectory segmentation via learning spatio-temporal semantics
The study of vessel trajectories (VTs) holds significant benefits for marine route management and resource development. VT segmentation serves as a foundation for extracting vessel motion primitives and enables analysis of vessel manoeuvring habits and behavioural intentions. However, existing methods relying on predefined behaviour patterns face high labelling costs, which hinder accurate pattern recognition. This paper proposes a self-supervised vessel trajectory segmentation method (SS-VTS), which segments VTs based on their inherent spatio-temporal semantics. SS-VTS adaptively divides VTs into cells of optimal size. Then, it extracts split points on different semantic levels from the multi-dimensional feature sequence of the VTs using self-supervised learning. Finally, spatio-temporal distance fusion module is performed on split points to determine change points and obtain VT segments with multiple semantics. Experiments on a real automatic identification system datasets show that SS-VTS achieves state-of-the-art segmentation results compared to seven baseline methods.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf