通过学习时空语义进行自监督血管轨迹分割

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2024-10-14 DOI:10.1049/itr2.12570
Rui Zhang, Haitao Ren, Zhipei Yu, Zhu Xiao, Kezhong Liu, Hongbo Jiang
{"title":"通过学习时空语义进行自监督血管轨迹分割","authors":"Rui Zhang,&nbsp;Haitao Ren,&nbsp;Zhipei Yu,&nbsp;Zhu Xiao,&nbsp;Kezhong Liu,&nbsp;Hongbo Jiang","doi":"10.1049/itr2.12570","DOIUrl":null,"url":null,"abstract":"<p>The study of vessel trajectories (VTs) holds significant benefits for marine route management and resource development. VT segmentation serves as a foundation for extracting vessel motion primitives and enables analysis of vessel manoeuvring habits and behavioural intentions. However, existing methods relying on predefined behaviour patterns face high labelling costs, which hinder accurate pattern recognition. This paper proposes a self-supervised vessel trajectory segmentation method (SS-VTS), which segments VTs based on their inherent spatio-temporal semantics. SS-VTS adaptively divides VTs into cells of optimal size. Then, it extracts split points on different semantic levels from the multi-dimensional feature sequence of the VTs using self-supervised learning. Finally, spatio-temporal distance fusion module is performed on split points to determine change points and obtain VT segments with multiple semantics. Experiments on a real automatic identification system datasets show that SS-VTS achieves state-of-the-art segmentation results compared to seven baseline methods.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 11","pages":"2242-2254"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12570","citationCount":"0","resultStr":"{\"title\":\"Self-supervised vessel trajectory segmentation via learning spatio-temporal semantics\",\"authors\":\"Rui Zhang,&nbsp;Haitao Ren,&nbsp;Zhipei Yu,&nbsp;Zhu Xiao,&nbsp;Kezhong Liu,&nbsp;Hongbo Jiang\",\"doi\":\"10.1049/itr2.12570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study of vessel trajectories (VTs) holds significant benefits for marine route management and resource development. VT segmentation serves as a foundation for extracting vessel motion primitives and enables analysis of vessel manoeuvring habits and behavioural intentions. However, existing methods relying on predefined behaviour patterns face high labelling costs, which hinder accurate pattern recognition. This paper proposes a self-supervised vessel trajectory segmentation method (SS-VTS), which segments VTs based on their inherent spatio-temporal semantics. SS-VTS adaptively divides VTs into cells of optimal size. Then, it extracts split points on different semantic levels from the multi-dimensional feature sequence of the VTs using self-supervised learning. Finally, spatio-temporal distance fusion module is performed on split points to determine change points and obtain VT segments with multiple semantics. Experiments on a real automatic identification system datasets show that SS-VTS achieves state-of-the-art segmentation results compared to seven baseline methods.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 11\",\"pages\":\"2242-2254\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12570\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12570\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12570","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对船舶轨迹(VT)的研究对海洋航线管理和资源开发具有重大意义。船舶轨迹分割是提取船舶运动基元的基础,可用于分析船舶操纵习惯和行为意图。然而,依赖于预定义行为模式的现有方法面临着高昂的标记成本,这阻碍了准确的模式识别。本文提出了一种自监督船只轨迹分割方法(SS-VTS),该方法根据船只固有的时空语义对船只轨迹进行分割。SS-VTS 自适应地将血管分成最佳大小的单元。然后,它利用自我监督学习从 VT 的多维特征序列中提取不同语义层次的分割点。最后,在分割点上执行时空距离融合模块,以确定变化点并获得具有多种语义的 VT 片段。在真实的自动识别系统数据集上进行的实验表明,与七种基准方法相比,SS-VTS 实现了最先进的分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-supervised vessel trajectory segmentation via learning spatio-temporal semantics

The study of vessel trajectories (VTs) holds significant benefits for marine route management and resource development. VT segmentation serves as a foundation for extracting vessel motion primitives and enables analysis of vessel manoeuvring habits and behavioural intentions. However, existing methods relying on predefined behaviour patterns face high labelling costs, which hinder accurate pattern recognition. This paper proposes a self-supervised vessel trajectory segmentation method (SS-VTS), which segments VTs based on their inherent spatio-temporal semantics. SS-VTS adaptively divides VTs into cells of optimal size. Then, it extracts split points on different semantic levels from the multi-dimensional feature sequence of the VTs using self-supervised learning. Finally, spatio-temporal distance fusion module is performed on split points to determine change points and obtain VT segments with multiple semantics. Experiments on a real automatic identification system datasets show that SS-VTS achieves state-of-the-art segmentation results compared to seven baseline methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
Exploring changes in residents' daily activity patterns through sequence visualization analysis Multispectral pedestrian detection based on feature complementation and enhancement Self-supervised vessel trajectory segmentation via learning spatio-temporal semantics Optimizing customized bus services for multi-trip urban passengers: A bi-objective approach Assessing the performance of a hybrid max-weight traffic signal control algorithm in the presence of noisy queue information: An evaluation of the environmental impacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1