利用快速质子传输 MoO3 氧化还原媒介实现脱钩水还原和肼氧化制氢。

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-11-18 DOI:10.1002/smll.202407783
AJing Song, Yuan Wei, Xin Jin, Yuanyuan Ma, Yonggang Wang, Jianping Yang
{"title":"利用快速质子传输 MoO3 氧化还原媒介实现脱钩水还原和肼氧化制氢。","authors":"AJing Song, Yuan Wei, Xin Jin, Yuanyuan Ma, Yonggang Wang, Jianping Yang","doi":"10.1002/smll.202407783","DOIUrl":null,"url":null,"abstract":"<p><p>Water electrolysis powered by renewable energy is a green and sustainable method for hydrogen production. Decoupled water electrolysis with the aid of solid-state redox mediator could separate the hydrogen and oxygen production in time and space without the use of the membrane, showing high flexibility. Herein, a MoO<sub>3</sub> electrode with fast proton transport property is employed as a solid-state redox mediator to construct a membrane-free decoupled acidic electrolytic system. The MoO<sub>3</sub> electrode exhibits high specific capacity (204.3 mAh g<sup>-1</sup> at 5 A g<sup>-1</sup>) and excellent rate performance (92.8 mAh g<sup>-1</sup> at 150 A g<sup>-1</sup>) in the acidic environment. Due to the dense oxide-ion arrays, MoO<sub>3</sub> still exhibits excellent performance under high mass-loading. In addition, a hybrid decoupled electrolysis system is also constructed by combining water reduction and hydrazine oxidation, which can not only generate high-purity H<sub>2</sub> but also remove hydrazine hazards in acidic wastewater with lower energy consumption.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2407783"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoupled Water Reduction and Hydrazine Oxidation by Fast Proton Transport MoO<sub>3</sub> Redox Mediator for Hydrogen Production.\",\"authors\":\"AJing Song, Yuan Wei, Xin Jin, Yuanyuan Ma, Yonggang Wang, Jianping Yang\",\"doi\":\"10.1002/smll.202407783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Water electrolysis powered by renewable energy is a green and sustainable method for hydrogen production. Decoupled water electrolysis with the aid of solid-state redox mediator could separate the hydrogen and oxygen production in time and space without the use of the membrane, showing high flexibility. Herein, a MoO<sub>3</sub> electrode with fast proton transport property is employed as a solid-state redox mediator to construct a membrane-free decoupled acidic electrolytic system. The MoO<sub>3</sub> electrode exhibits high specific capacity (204.3 mAh g<sup>-1</sup> at 5 A g<sup>-1</sup>) and excellent rate performance (92.8 mAh g<sup>-1</sup> at 150 A g<sup>-1</sup>) in the acidic environment. Due to the dense oxide-ion arrays, MoO<sub>3</sub> still exhibits excellent performance under high mass-loading. In addition, a hybrid decoupled electrolysis system is also constructed by combining water reduction and hydrazine oxidation, which can not only generate high-purity H<sub>2</sub> but also remove hydrazine hazards in acidic wastewater with lower energy consumption.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\" \",\"pages\":\"e2407783\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202407783\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407783","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以可再生能源为动力的水电解是一种绿色、可持续的制氢方法。借助固态氧化还原介质的解耦水电解法可以在不使用膜的情况下,在时间和空间上分离氢气和氧气的产生,具有很高的灵活性。本文采用具有快速质子传输特性的 MoO3 电极作为固态氧化还原介质,构建了无膜解耦酸性电解系统。该 MoO3 电极在酸性环境中表现出较高的比容量(5 A g-1 时为 204.3 mAh g-1)和优异的速率性能(150 A g-1 时为 92.8 mAh g-1)。由于氧化物离子阵列致密,MoO3 在高负载质量下仍能表现出卓越的性能。此外,通过将水还原和肼氧化相结合,还构建了一种混合解耦电解系统,不仅能产生高纯度的 H2,还能以较低的能耗去除酸性废水中的肼危害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decoupled Water Reduction and Hydrazine Oxidation by Fast Proton Transport MoO3 Redox Mediator for Hydrogen Production.

Water electrolysis powered by renewable energy is a green and sustainable method for hydrogen production. Decoupled water electrolysis with the aid of solid-state redox mediator could separate the hydrogen and oxygen production in time and space without the use of the membrane, showing high flexibility. Herein, a MoO3 electrode with fast proton transport property is employed as a solid-state redox mediator to construct a membrane-free decoupled acidic electrolytic system. The MoO3 electrode exhibits high specific capacity (204.3 mAh g-1 at 5 A g-1) and excellent rate performance (92.8 mAh g-1 at 150 A g-1) in the acidic environment. Due to the dense oxide-ion arrays, MoO3 still exhibits excellent performance under high mass-loading. In addition, a hybrid decoupled electrolysis system is also constructed by combining water reduction and hydrazine oxidation, which can not only generate high-purity H2 but also remove hydrazine hazards in acidic wastewater with lower energy consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Magnetically Responsive Enzyme and Hydrogen‐Bonded Organic Framework Biocomposites for Biosensing Biomimetic Mineralized Collagen Scaffolds for Bone Tissue Engineering: Strategies on Elaborate Fabrication for Bioactivity Improvement Synergistic Inclusion of Reaction Activator and Reaction Accelerator to Ni‐MOF Toward Extra‐Ordinary Performance of Urea Oxidation Reaction Microsensor‐Internalized Fibers as Autonomously Controllable Soft Actuators Ni Vacancy and the Se/S Ratio Regulate the p‐Band Center of Hollow NiSxSe2‐x/Phase Junction CdS to Achieve High Efficiency and Broad‐Spectrum Photocatalytic Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1