Kwanghyun Park, Gyeongmin Kim, Seungwoo Cha, Yangsub Ham, Ji-Sook Hahn
{"title":"通过代谢工程在脂溶性亚罗酵母中高效生产无色类胡萝卜素。","authors":"Kwanghyun Park, Gyeongmin Kim, Seungwoo Cha, Yangsub Ham, Ji-Sook Hahn","doi":"10.1021/acs.jafc.4c07735","DOIUrl":null,"url":null,"abstract":"<p><p>Phytoene, a colorless carotenoid with unique ultraviolet (UV)-B absorption properties, offers potential for applications in functional food, cosmetics, and therapeutics. However, their low natural yield poses a challenge for large-scale production. This study aims to enhance phytoene production in the oleaginous yeast <i>Yarrowia lipolytica</i> by introducing a heterologous phytoene synthase gene combined with metabolic engineering approaches. We enhanced phytoene synthesis by overexpressing key genes in the mevalonate pathway and compartmentalizing the biosynthetic pathway within peroxisomes. Moreover, we inhibited the glyoxylate cycle to increase the accumulation of peroxisomal acetyl-CoA available for phytoene production. Our engineered strains demonstrated a significant increase in phytoene production, reaching up to 1.34 g/L titer and 58.74 mg/gDCW yield in the flask-scale fed-batch culture, which are the highest levels reported to date. These results underscore the potential of <i>Y. lipolytica</i> as a robust platform for producing phytoenes and other terpenoids on an industrial scale, offering valuable insights for future efforts in metabolic engineering.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Production of the Colorless Carotenoid Phytoene in <i>Yarrowia lipolytica</i> through Metabolic Engineering.\",\"authors\":\"Kwanghyun Park, Gyeongmin Kim, Seungwoo Cha, Yangsub Ham, Ji-Sook Hahn\",\"doi\":\"10.1021/acs.jafc.4c07735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phytoene, a colorless carotenoid with unique ultraviolet (UV)-B absorption properties, offers potential for applications in functional food, cosmetics, and therapeutics. However, their low natural yield poses a challenge for large-scale production. This study aims to enhance phytoene production in the oleaginous yeast <i>Yarrowia lipolytica</i> by introducing a heterologous phytoene synthase gene combined with metabolic engineering approaches. We enhanced phytoene synthesis by overexpressing key genes in the mevalonate pathway and compartmentalizing the biosynthetic pathway within peroxisomes. Moreover, we inhibited the glyoxylate cycle to increase the accumulation of peroxisomal acetyl-CoA available for phytoene production. Our engineered strains demonstrated a significant increase in phytoene production, reaching up to 1.34 g/L titer and 58.74 mg/gDCW yield in the flask-scale fed-batch culture, which are the highest levels reported to date. These results underscore the potential of <i>Y. lipolytica</i> as a robust platform for producing phytoenes and other terpenoids on an industrial scale, offering valuable insights for future efforts in metabolic engineering.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c07735\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c07735","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficient Production of the Colorless Carotenoid Phytoene in Yarrowia lipolytica through Metabolic Engineering.
Phytoene, a colorless carotenoid with unique ultraviolet (UV)-B absorption properties, offers potential for applications in functional food, cosmetics, and therapeutics. However, their low natural yield poses a challenge for large-scale production. This study aims to enhance phytoene production in the oleaginous yeast Yarrowia lipolytica by introducing a heterologous phytoene synthase gene combined with metabolic engineering approaches. We enhanced phytoene synthesis by overexpressing key genes in the mevalonate pathway and compartmentalizing the biosynthetic pathway within peroxisomes. Moreover, we inhibited the glyoxylate cycle to increase the accumulation of peroxisomal acetyl-CoA available for phytoene production. Our engineered strains demonstrated a significant increase in phytoene production, reaching up to 1.34 g/L titer and 58.74 mg/gDCW yield in the flask-scale fed-batch culture, which are the highest levels reported to date. These results underscore the potential of Y. lipolytica as a robust platform for producing phytoenes and other terpenoids on an industrial scale, offering valuable insights for future efforts in metabolic engineering.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.