{"title":"通过多功能糖苷酶和鼠李糖酶的单锅级联酶法从淫羊藿提取物中生产淫羊藿苷。","authors":"Jingjing Zhang, Jing Huang, Yufan Yang, Daxin Zhao, Cong Wang, Peng Zhong, Jianhua Jia, Weifan Dang, Qiwei Lu, Chengyu Zhang, Xiaohui Yan","doi":"10.1016/j.ijbiomac.2024.137784","DOIUrl":null,"url":null,"abstract":"<p><p>Icaritin (ICT), a compound with diverse biological activities derived from Epimedium folium, is typically present in low concentrations in EFs. However, the abundant glycosyl-modified ICT compounds facilitate its transformation into ICT. Current biocatalytic production faces challenges, including low conversion rates and limited enzyme activity. This study developed a one-pot enzymatic cascade strategy for directly biotransform crude extracts of Epimedium folium (EEF) to produce ICT. The feasibility of catalyzing different ICT-related compounds in EEF was validated through molecular docking and substrate reactions. The selected glycosidase exhibited simultaneous activities as a glucosidase, xylosidase, and α-1,6-rhamnosidase, with the rhamnosidase showing outer-rhamnosidic activity and weak glucosidase activity. By using EFs as the substrate and employing whole-cells (Escherichia coli) containing LacS and BtRha proteins for synergistic catalysis, icariin can be efficiently synthesized within 6 h, achieving a conversion rate of 100 %. The enzymatic cascade for ICT production from crude extracts was elucidated by analyzing catalytic intermediates via HPLC. Compared to strategies using single or traditional multi-enzyme applications, this method shows advantages of ease to operation, high efficiency, and large production yield performance. This method has the potential to become an eco-friendly catalytic strategy for the large-scale production of icaritin.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137784"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Icaritin production from Epimedium folium extract by a one-pot enzymatic cascade of a multifunctional glycosidase and rhamnosidase.\",\"authors\":\"Jingjing Zhang, Jing Huang, Yufan Yang, Daxin Zhao, Cong Wang, Peng Zhong, Jianhua Jia, Weifan Dang, Qiwei Lu, Chengyu Zhang, Xiaohui Yan\",\"doi\":\"10.1016/j.ijbiomac.2024.137784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Icaritin (ICT), a compound with diverse biological activities derived from Epimedium folium, is typically present in low concentrations in EFs. However, the abundant glycosyl-modified ICT compounds facilitate its transformation into ICT. Current biocatalytic production faces challenges, including low conversion rates and limited enzyme activity. This study developed a one-pot enzymatic cascade strategy for directly biotransform crude extracts of Epimedium folium (EEF) to produce ICT. The feasibility of catalyzing different ICT-related compounds in EEF was validated through molecular docking and substrate reactions. The selected glycosidase exhibited simultaneous activities as a glucosidase, xylosidase, and α-1,6-rhamnosidase, with the rhamnosidase showing outer-rhamnosidic activity and weak glucosidase activity. By using EFs as the substrate and employing whole-cells (Escherichia coli) containing LacS and BtRha proteins for synergistic catalysis, icariin can be efficiently synthesized within 6 h, achieving a conversion rate of 100 %. The enzymatic cascade for ICT production from crude extracts was elucidated by analyzing catalytic intermediates via HPLC. Compared to strategies using single or traditional multi-enzyme applications, this method shows advantages of ease to operation, high efficiency, and large production yield performance. This method has the potential to become an eco-friendly catalytic strategy for the large-scale production of icaritin.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"137784\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137784\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137784","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Icaritin production from Epimedium folium extract by a one-pot enzymatic cascade of a multifunctional glycosidase and rhamnosidase.
Icaritin (ICT), a compound with diverse biological activities derived from Epimedium folium, is typically present in low concentrations in EFs. However, the abundant glycosyl-modified ICT compounds facilitate its transformation into ICT. Current biocatalytic production faces challenges, including low conversion rates and limited enzyme activity. This study developed a one-pot enzymatic cascade strategy for directly biotransform crude extracts of Epimedium folium (EEF) to produce ICT. The feasibility of catalyzing different ICT-related compounds in EEF was validated through molecular docking and substrate reactions. The selected glycosidase exhibited simultaneous activities as a glucosidase, xylosidase, and α-1,6-rhamnosidase, with the rhamnosidase showing outer-rhamnosidic activity and weak glucosidase activity. By using EFs as the substrate and employing whole-cells (Escherichia coli) containing LacS and BtRha proteins for synergistic catalysis, icariin can be efficiently synthesized within 6 h, achieving a conversion rate of 100 %. The enzymatic cascade for ICT production from crude extracts was elucidated by analyzing catalytic intermediates via HPLC. Compared to strategies using single or traditional multi-enzyme applications, this method shows advantages of ease to operation, high efficiency, and large production yield performance. This method has the potential to become an eco-friendly catalytic strategy for the large-scale production of icaritin.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.