Qiming Yan, Yang Cao, Qihui Chen, Maochun Hong, Meng Zhou
{"title":"受植物体框架仿生学启发:自愈合聚乙烯醇/纤维素纳米晶体复合水凝胶的制作,聚氨酯海绵对其进行增强,用于柔性超级电容器。","authors":"Qiming Yan, Yang Cao, Qihui Chen, Maochun Hong, Meng Zhou","doi":"10.1016/j.ijbiomac.2024.137795","DOIUrl":null,"url":null,"abstract":"<p><p>With the booming development of electronic technology, ultra-toughness and self-healing supercapacitors have drawn substantial attentions. In this work, inspired by plant body frameworks, a novel method was proposed to prepare self-healing conductive hydrogels based on self-healing polyurethane sponge (PUS) network. First, a self-healing PUS based on multiple hydrogen bonding interactions and disulfide bonds was prepared. Subsequently, PUS was combined with polyvinyl alcohol (PVA)/cellulose nanocrystals (CNF) composite hydrogels crosslinked by borate ester bonds and hydrogen bonding interactions to manufacture the sponge network reinforced self-healing conductive hydrogels. Due to the reinforcement of PUS, the composite hydrogels had excellent mechanical properties, with a tensile strength of 1.81 MPa and a compressive strength of 1.96 MPa. After 400 times of charge-discharge cycles under bending deformation, the supercapacitor could maintain 90.1 % of the original specific capacitance value. Furthermore, the hydrogels could be healed at room temperature due to the hydrogen bonds and reversible borate bonds in PVA/CNF matrix, as well as the disulfide bonds and multiple hydrogen bonds in PUS. The healed supercapacitor could maintain 75.2 % of the original specific capacitance value after 400 times of charge-discharge cycles. Therefore, the as-prepared self-healing and tough conductive hydrogels may have promising prospects in electronic devices.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137795"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inspired by plant body frameworks bionics: Fabrication of self-healing polyvinyl alcohol/cellulose nanocrystals composite hydrogels reinforced by polyurethane sponges for flexible supercapacitors.\",\"authors\":\"Qiming Yan, Yang Cao, Qihui Chen, Maochun Hong, Meng Zhou\",\"doi\":\"10.1016/j.ijbiomac.2024.137795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the booming development of electronic technology, ultra-toughness and self-healing supercapacitors have drawn substantial attentions. In this work, inspired by plant body frameworks, a novel method was proposed to prepare self-healing conductive hydrogels based on self-healing polyurethane sponge (PUS) network. First, a self-healing PUS based on multiple hydrogen bonding interactions and disulfide bonds was prepared. Subsequently, PUS was combined with polyvinyl alcohol (PVA)/cellulose nanocrystals (CNF) composite hydrogels crosslinked by borate ester bonds and hydrogen bonding interactions to manufacture the sponge network reinforced self-healing conductive hydrogels. Due to the reinforcement of PUS, the composite hydrogels had excellent mechanical properties, with a tensile strength of 1.81 MPa and a compressive strength of 1.96 MPa. After 400 times of charge-discharge cycles under bending deformation, the supercapacitor could maintain 90.1 % of the original specific capacitance value. Furthermore, the hydrogels could be healed at room temperature due to the hydrogen bonds and reversible borate bonds in PVA/CNF matrix, as well as the disulfide bonds and multiple hydrogen bonds in PUS. The healed supercapacitor could maintain 75.2 % of the original specific capacitance value after 400 times of charge-discharge cycles. Therefore, the as-prepared self-healing and tough conductive hydrogels may have promising prospects in electronic devices.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"137795\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137795\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137795","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
随着电子技术的蓬勃发展,超强韧性和自愈合超级电容器备受关注。本研究受植物体框架的启发,提出了一种基于自愈合聚氨酯海绵(PUS)网络制备自愈合导电水凝胶的新方法。首先,制备了一种基于多重氢键相互作用和二硫键的自愈合 PUS。随后,将 PUS 与通过硼酸酯键和氢键相互作用交联的聚乙烯醇(PVA)/纤维素纳米晶(CNF)复合水凝胶结合,制备出海绵网络增强型自愈合导电水凝胶。由于 PUS 的增强作用,复合水凝胶具有优异的机械性能,拉伸强度为 1.81 兆帕,压缩强度为 1.96 兆帕。在弯曲变形条件下进行 400 次充放电循环后,超级电容器仍能保持原有比电容值的 90.1%。此外,由于 PVA/CNF 基质中的氢键和可逆硼酸盐键以及 PUS 中的二硫键和多重氢键,水凝胶可在室温下愈合。愈合后的超级电容器在充放电循环 400 次后仍能保持 75.2% 的原始比电容值。因此,制备的自愈合强韧导电水凝胶在电子设备中具有广阔的应用前景。
Inspired by plant body frameworks bionics: Fabrication of self-healing polyvinyl alcohol/cellulose nanocrystals composite hydrogels reinforced by polyurethane sponges for flexible supercapacitors.
With the booming development of electronic technology, ultra-toughness and self-healing supercapacitors have drawn substantial attentions. In this work, inspired by plant body frameworks, a novel method was proposed to prepare self-healing conductive hydrogels based on self-healing polyurethane sponge (PUS) network. First, a self-healing PUS based on multiple hydrogen bonding interactions and disulfide bonds was prepared. Subsequently, PUS was combined with polyvinyl alcohol (PVA)/cellulose nanocrystals (CNF) composite hydrogels crosslinked by borate ester bonds and hydrogen bonding interactions to manufacture the sponge network reinforced self-healing conductive hydrogels. Due to the reinforcement of PUS, the composite hydrogels had excellent mechanical properties, with a tensile strength of 1.81 MPa and a compressive strength of 1.96 MPa. After 400 times of charge-discharge cycles under bending deformation, the supercapacitor could maintain 90.1 % of the original specific capacitance value. Furthermore, the hydrogels could be healed at room temperature due to the hydrogen bonds and reversible borate bonds in PVA/CNF matrix, as well as the disulfide bonds and multiple hydrogen bonds in PUS. The healed supercapacitor could maintain 75.2 % of the original specific capacitance value after 400 times of charge-discharge cycles. Therefore, the as-prepared self-healing and tough conductive hydrogels may have promising prospects in electronic devices.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.