含大麻二酚的透明质酸基注射微颗粒对大鼠坐骨神经损伤模型的疗效。

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2024-11-16 DOI:10.1016/j.ijbiomac.2024.137780
Seyed Mohammad Davachi, Marisol Vazquez, Maryam Soleimani, Zeinab Hajmohammadi, Maryam Mohajer, Seyed Behnamedin Jamei, Mehdi Khanmohammadi, Roghayeh Najafi, Zohre Bagher, Sajad Hassanzadeh
{"title":"含大麻二酚的透明质酸基注射微颗粒对大鼠坐骨神经损伤模型的疗效。","authors":"Seyed Mohammad Davachi, Marisol Vazquez, Maryam Soleimani, Zeinab Hajmohammadi, Maryam Mohajer, Seyed Behnamedin Jamei, Mehdi Khanmohammadi, Roghayeh Najafi, Zohre Bagher, Sajad Hassanzadeh","doi":"10.1016/j.ijbiomac.2024.137780","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed an innovative peripheral nerve tissue repair approach by designing biomimetic microparticles loaded with cannabidiol (CBD) using horseradish peroxidase-mediated crosslinking within a microfluidic device. This method utilizes a water-in-oil emulsion system where a mixture of phenol-substituted hyaluronic acid (HAPh), CBD, and laccase is channeled into oil flow, forming hydrogel microparticles. The physical properties, such as their swelling rate, mechanical strength, and the sustained release of CBD, emphasize their potential in tissue engineering and drug delivery applications. Cellular proliferation studies within the microparticles demonstrate their cytocompatibility, making them suitable for developing microtissues. The microparticles also served as a controlled release mechanism for CBD-targeted delivery to the injured locations, showcasing the effectiveness and ability to aid in the regeneration of the sciatic nerve tissue. In vivo, histopathological analysis of treated sciatic nerve injuries showed enhanced axonal restoring and remyelination with HAPh microparticles containing CBD in contrast to control groups. Furthermore, microparticles enhanced various functional aspects of locomotor activities, such as functional sciatic index (SFI) values, response to heat stimulation, and muscle mass retention. In conclusion, results indicate that these composite biomimetic microparticles with CBD effectively promote nerve structural restoration and increase the reconstruction process in a sciatic nerve injury model.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137780"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effectiveness of the injectable hyaluronic acid-based microparticles loaded with cannabidiol on rat sciatic nerve injury model.\",\"authors\":\"Seyed Mohammad Davachi, Marisol Vazquez, Maryam Soleimani, Zeinab Hajmohammadi, Maryam Mohajer, Seyed Behnamedin Jamei, Mehdi Khanmohammadi, Roghayeh Najafi, Zohre Bagher, Sajad Hassanzadeh\",\"doi\":\"10.1016/j.ijbiomac.2024.137780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have developed an innovative peripheral nerve tissue repair approach by designing biomimetic microparticles loaded with cannabidiol (CBD) using horseradish peroxidase-mediated crosslinking within a microfluidic device. This method utilizes a water-in-oil emulsion system where a mixture of phenol-substituted hyaluronic acid (HAPh), CBD, and laccase is channeled into oil flow, forming hydrogel microparticles. The physical properties, such as their swelling rate, mechanical strength, and the sustained release of CBD, emphasize their potential in tissue engineering and drug delivery applications. Cellular proliferation studies within the microparticles demonstrate their cytocompatibility, making them suitable for developing microtissues. The microparticles also served as a controlled release mechanism for CBD-targeted delivery to the injured locations, showcasing the effectiveness and ability to aid in the regeneration of the sciatic nerve tissue. In vivo, histopathological analysis of treated sciatic nerve injuries showed enhanced axonal restoring and remyelination with HAPh microparticles containing CBD in contrast to control groups. Furthermore, microparticles enhanced various functional aspects of locomotor activities, such as functional sciatic index (SFI) values, response to heat stimulation, and muscle mass retention. In conclusion, results indicate that these composite biomimetic microparticles with CBD effectively promote nerve structural restoration and increase the reconstruction process in a sciatic nerve injury model.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"137780\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137780\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137780","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们利用辣根过氧化物酶介导的交联技术,在微流体设备中设计出了装载大麻二酚(CBD)的仿生微颗粒,从而开发出了一种创新的外周神经组织修复方法。该方法利用油包水型乳液系统,将酚取代透明质酸(HAPh)、大麻二酚和漆酶的混合物导入油流,形成水凝胶微颗粒。微颗粒的物理性质,如溶胀率、机械强度和 CBD 的持续释放,都突出了其在组织工程和药物输送应用方面的潜力。微颗粒内的细胞增殖研究证明了它们的细胞相容性,使其适用于开发微组织。微颗粒还可作为一种可控释放机制,将 CBD 靶向输送到受伤部位,展示了其帮助坐骨神经组织再生的有效性和能力。体内坐骨神经损伤的组织病理学分析表明,与对照组相比,含有 CBD 的 HAPh 微颗粒增强了轴突恢复和髓鞘再形成。此外,微颗粒还增强了运动活动的各种功能,如坐骨神经功能指数(SFI)值、对热刺激的反应和肌肉质量保持。总之,研究结果表明,在坐骨神经损伤模型中,这些含有CBD的复合仿生微颗粒能有效促进神经结构的恢复并提高重建进程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effectiveness of the injectable hyaluronic acid-based microparticles loaded with cannabidiol on rat sciatic nerve injury model.

We have developed an innovative peripheral nerve tissue repair approach by designing biomimetic microparticles loaded with cannabidiol (CBD) using horseradish peroxidase-mediated crosslinking within a microfluidic device. This method utilizes a water-in-oil emulsion system where a mixture of phenol-substituted hyaluronic acid (HAPh), CBD, and laccase is channeled into oil flow, forming hydrogel microparticles. The physical properties, such as their swelling rate, mechanical strength, and the sustained release of CBD, emphasize their potential in tissue engineering and drug delivery applications. Cellular proliferation studies within the microparticles demonstrate their cytocompatibility, making them suitable for developing microtissues. The microparticles also served as a controlled release mechanism for CBD-targeted delivery to the injured locations, showcasing the effectiveness and ability to aid in the regeneration of the sciatic nerve tissue. In vivo, histopathological analysis of treated sciatic nerve injuries showed enhanced axonal restoring and remyelination with HAPh microparticles containing CBD in contrast to control groups. Furthermore, microparticles enhanced various functional aspects of locomotor activities, such as functional sciatic index (SFI) values, response to heat stimulation, and muscle mass retention. In conclusion, results indicate that these composite biomimetic microparticles with CBD effectively promote nerve structural restoration and increase the reconstruction process in a sciatic nerve injury model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
Corrigendum to “Impact of salting-in/out assisted extraction on rheological, biological, and digestive, and proteomic properties of Tenebrio molitor larvae protein isolates” [Int. J. Biol. Macromol. 282 (2024) 137044] Mussel-inspired oxidized sodium alginate/cellulose composite sponge with excellent shape recovery and antibacterial properties for the efficient control of non-compressible hemorrhage. Brick-cement system inspired fabrication of Ti3C2 MXene nanosheet reinforced high-performance of chitosan/gelatin/PVA composite films. Corrigendum to "Antimicrobial peptides-loaded smart chitosan hydrogel: Release behavior and antibacterial potential against antibiotic resistant clinical isolates" [Int. J. Biol. Macromol. 164 (2020) 855-862]. Carboxymethylcellulose-based aggregation-induced emission antibacterial material for multifunctional applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1