{"title":"用于隔热的防火气凝胶和泡沫:从材料到特性。","authors":"Jiabing Feng, Zhewen Ma, Jianpeng Wu, Zhezhe Zhou, Zheng Liu, Boyou Hou, Wei Zheng, Siqi Huo, Ye-Tang Pan, Min Hong, Qiang Gao, Ziqi Sun, Hao Wang, Pingan Song","doi":"10.1002/adma.202411856","DOIUrl":null,"url":null,"abstract":"<p><p>The ambition of human beings to create a comfortable environment for work and life in a sustainable way has triggered a great need for advanced thermal insulation materials in past decades. Aerogels and foams present great prospects as thermal insulators owing to their low density, good thermal insulation, mechanical robustness, and even high fire resistance. These merits make them suitable for many real-world applications, such as energy-saving building materials, thermally protective materials in aircrafts and battery, and warming fabrics. Despite great advances, to date there remains a lack of a comprehensive yet critical review on the thermal insulation materials. Herein, recent progresses in fire-safe thermal-insulating aerogels and foams are summarized, and pros/cons of three major categories of aerogels/foams (inorganic, organic and their hybrids) are discussed. Finally, key challenges associated with existing aerogels are discussed and some future opportunities are proposed. This review is expected to expedite the development of advanced aerogels and foams as fire-safe thermally insulating materials, and to help create a sustainable, safe, and energy-efficient society.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2411856"},"PeriodicalIF":27.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fire-Safe Aerogels and Foams for Thermal Insulation: From Materials to Properties.\",\"authors\":\"Jiabing Feng, Zhewen Ma, Jianpeng Wu, Zhezhe Zhou, Zheng Liu, Boyou Hou, Wei Zheng, Siqi Huo, Ye-Tang Pan, Min Hong, Qiang Gao, Ziqi Sun, Hao Wang, Pingan Song\",\"doi\":\"10.1002/adma.202411856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ambition of human beings to create a comfortable environment for work and life in a sustainable way has triggered a great need for advanced thermal insulation materials in past decades. Aerogels and foams present great prospects as thermal insulators owing to their low density, good thermal insulation, mechanical robustness, and even high fire resistance. These merits make them suitable for many real-world applications, such as energy-saving building materials, thermally protective materials in aircrafts and battery, and warming fabrics. Despite great advances, to date there remains a lack of a comprehensive yet critical review on the thermal insulation materials. Herein, recent progresses in fire-safe thermal-insulating aerogels and foams are summarized, and pros/cons of three major categories of aerogels/foams (inorganic, organic and their hybrids) are discussed. Finally, key challenges associated with existing aerogels are discussed and some future opportunities are proposed. This review is expected to expedite the development of advanced aerogels and foams as fire-safe thermally insulating materials, and to help create a sustainable, safe, and energy-efficient society.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e2411856\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202411856\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202411856","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fire-Safe Aerogels and Foams for Thermal Insulation: From Materials to Properties.
The ambition of human beings to create a comfortable environment for work and life in a sustainable way has triggered a great need for advanced thermal insulation materials in past decades. Aerogels and foams present great prospects as thermal insulators owing to their low density, good thermal insulation, mechanical robustness, and even high fire resistance. These merits make them suitable for many real-world applications, such as energy-saving building materials, thermally protective materials in aircrafts and battery, and warming fabrics. Despite great advances, to date there remains a lack of a comprehensive yet critical review on the thermal insulation materials. Herein, recent progresses in fire-safe thermal-insulating aerogels and foams are summarized, and pros/cons of three major categories of aerogels/foams (inorganic, organic and their hybrids) are discussed. Finally, key challenges associated with existing aerogels are discussed and some future opportunities are proposed. This review is expected to expedite the development of advanced aerogels and foams as fire-safe thermally insulating materials, and to help create a sustainable, safe, and energy-efficient society.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.