zju-miR156c介导的网络调控大枣 "巫婆帚 "症状的机制

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Molecular plant pathology Pub Date : 2024-11-01 DOI:10.1111/mpp.70031
Yunjie Wang, Zhi Luo, Xuan Zhao, Hongqiang Sun, Jiaxin Liu, Dongfeng Zhang, Haonan Cao, Changfeng Ai, Lihu Wang, Li Dai, Mengjun Liu, Lixin Wang, Zhiguo Liu
{"title":"zju-miR156c介导的网络调控大枣 \"巫婆帚 \"症状的机制","authors":"Yunjie Wang, Zhi Luo, Xuan Zhao, Hongqiang Sun, Jiaxin Liu, Dongfeng Zhang, Haonan Cao, Changfeng Ai, Lihu Wang, Li Dai, Mengjun Liu, Lixin Wang, Zhiguo Liu","doi":"10.1111/mpp.70031","DOIUrl":null,"url":null,"abstract":"<p><p>Jujube witches' broom, caused by phytoplasma, is a destructive disease of Chinese jujube. Studies have shown that zju-miR156s play an important role in phytoplasma infection in jujube, but the regulatory mechanism between zju-miR156c and witches' broom remains unexplored. In the current study, miRNA-seq and gene expression analysis showed that zju-miR156c was more highly induced in infected jujube plants than the other miRNAs and its target gene was ZjSPL3. In addition, the expression levels of thymidylate kinase gene (TMK<sub>JWB</sub>) and secreted jujube protein (SJP1<sub>JWB</sub>) in diseased materials were higher than those in healthy controls. The expression level of zju-miR156c was significantly upregulated, while ZjSPL3 was sharply downregulated and the content of cytokinin (CTK) significantly increased. Overexpression of zju-miR156c in Arabidopsis significantly reduced the expression of AtSPL10 (homologous gene of ZjSPL3) but increased the content of CTK, and the transgenic plants exhibited witches' broom symptoms. In addition, yeast two-hybrid and co-immunoprecipitation assays confirmed that SJP1<sub>JWB</sub> interacted with ZjERF18. Yeast one-hybrid analysis showed that ZjERF18 could interact with the promoter of zju-MIR156c. In conclusion, our results demonstrated a novel pathogenic module of ZjERF18-zju-miR156c-ZjSPL3-CTK has an important function in the formation of witches' broom caused by SJP1<sub>JWB</sub>.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 11","pages":"e70031"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of zju-miR156c-mediated network in regulating witches' broom symptom of Chinese jujube.\",\"authors\":\"Yunjie Wang, Zhi Luo, Xuan Zhao, Hongqiang Sun, Jiaxin Liu, Dongfeng Zhang, Haonan Cao, Changfeng Ai, Lihu Wang, Li Dai, Mengjun Liu, Lixin Wang, Zhiguo Liu\",\"doi\":\"10.1111/mpp.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Jujube witches' broom, caused by phytoplasma, is a destructive disease of Chinese jujube. Studies have shown that zju-miR156s play an important role in phytoplasma infection in jujube, but the regulatory mechanism between zju-miR156c and witches' broom remains unexplored. In the current study, miRNA-seq and gene expression analysis showed that zju-miR156c was more highly induced in infected jujube plants than the other miRNAs and its target gene was ZjSPL3. In addition, the expression levels of thymidylate kinase gene (TMK<sub>JWB</sub>) and secreted jujube protein (SJP1<sub>JWB</sub>) in diseased materials were higher than those in healthy controls. The expression level of zju-miR156c was significantly upregulated, while ZjSPL3 was sharply downregulated and the content of cytokinin (CTK) significantly increased. Overexpression of zju-miR156c in Arabidopsis significantly reduced the expression of AtSPL10 (homologous gene of ZjSPL3) but increased the content of CTK, and the transgenic plants exhibited witches' broom symptoms. In addition, yeast two-hybrid and co-immunoprecipitation assays confirmed that SJP1<sub>JWB</sub> interacted with ZjERF18. Yeast one-hybrid analysis showed that ZjERF18 could interact with the promoter of zju-MIR156c. In conclusion, our results demonstrated a novel pathogenic module of ZjERF18-zju-miR156c-ZjSPL3-CTK has an important function in the formation of witches' broom caused by SJP1<sub>JWB</sub>.</p>\",\"PeriodicalId\":18763,\"journal\":{\"name\":\"Molecular plant pathology\",\"volume\":\"25 11\",\"pages\":\"e70031\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular plant pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/mpp.70031\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70031","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由植原体引起的大枣巫术病是中国大枣的一种毁灭性病害。研究表明,zju-miR156s在大枣植原体感染中发挥重要作用,但zju-miR156c与大枣巫术帚病之间的调控机制仍未探明。在本研究中,miRNA-seq和基因表达分析表明,与其他miRNA相比,zju-miR156c在感染枣树植株中的诱导程度更高,其靶基因为ZjSPL3。此外,胸苷酸激酶基因(TMKJWB)和分泌型枣蛋白(SJP1JWB)在病料中的表达水平也高于健康对照组。zju-miR156c的表达水平显著上调,而ZjSPL3则急剧下降,细胞分裂素(CTK)的含量显著增加。在拟南芥中过表达zju-miR156c会明显降低AtSPL10(ZjSPL3的同源基因)的表达量,但会增加CTK的含量,转基因植株会表现出枯萎病症状。此外,酵母双杂交和共免疫沉淀实验证实了 SJP1JWB 与 ZjERF18 的相互作用。酵母单杂交分析表明,ZjERF18能与zju-MIR156c的启动子相互作用。总之,我们的研究结果表明,ZjERF18-zju-miR156c-ZjSPL3-CTK 的新型致病模块在 SJP1JWB 引起的女巫帚的形成过程中具有重要功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanism of zju-miR156c-mediated network in regulating witches' broom symptom of Chinese jujube.

Jujube witches' broom, caused by phytoplasma, is a destructive disease of Chinese jujube. Studies have shown that zju-miR156s play an important role in phytoplasma infection in jujube, but the regulatory mechanism between zju-miR156c and witches' broom remains unexplored. In the current study, miRNA-seq and gene expression analysis showed that zju-miR156c was more highly induced in infected jujube plants than the other miRNAs and its target gene was ZjSPL3. In addition, the expression levels of thymidylate kinase gene (TMKJWB) and secreted jujube protein (SJP1JWB) in diseased materials were higher than those in healthy controls. The expression level of zju-miR156c was significantly upregulated, while ZjSPL3 was sharply downregulated and the content of cytokinin (CTK) significantly increased. Overexpression of zju-miR156c in Arabidopsis significantly reduced the expression of AtSPL10 (homologous gene of ZjSPL3) but increased the content of CTK, and the transgenic plants exhibited witches' broom symptoms. In addition, yeast two-hybrid and co-immunoprecipitation assays confirmed that SJP1JWB interacted with ZjERF18. Yeast one-hybrid analysis showed that ZjERF18 could interact with the promoter of zju-MIR156c. In conclusion, our results demonstrated a novel pathogenic module of ZjERF18-zju-miR156c-ZjSPL3-CTK has an important function in the formation of witches' broom caused by SJP1JWB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
期刊最新文献
Herbicides as fungicides: Targeting heme biosynthesis in the maize pathogen Ustilago maydis. The Phytophthora infestans effector Pi05910 suppresses and destabilizes host glycolate oxidase StGOX4 to promote plant susceptibility. A novel protein elicitor (Cs08297) from Ciboria shiraiana enhances plant disease resistance. Flg22-facilitated PGPR colonization in root tips and control of root rot. A single phosphorylatable amino acid residue is essential for the recognition of multiple potyviral HCPro effectors by potato Nytbr.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1