Swati Sharma, Geetanjali B Gone, Parikshit Roychowdhury, Hyung Sik Kim, Sang Jeon Chung, Gowthmarajan Kuppusamy, Anindita De
{"title":"光动力和声动力疗法的协同作用:对多形性胶质母细胞瘤的机理认识和细胞反应。","authors":"Swati Sharma, Geetanjali B Gone, Parikshit Roychowdhury, Hyung Sik Kim, Sang Jeon Chung, Gowthmarajan Kuppusamy, Anindita De","doi":"10.1080/1061186X.2024.2431676","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM), the most aggressive form of brain cancer, poses substantial challenges to effective treatment due to its complex and infiltrative nature, making it difficult to manage. Photodynamic therapy (PDT) and sonodynamic therapy (SDT), have emerged as promising individual treatment options against GBM due to their least-invasive approach. However, both PDT and SDT have drawbacks that require careful consideration. A combination therapy using light and sound waves has gained attention, offering new avenues to overcome challenges from individual therapies. Sono-photodynamic therapy (SPDT) has been used against various tumours. Researchers are considering SPDT as a favourable alternative to the conventional therapies for GBM. SPDT offers complementary mechanisms of action, including the production of ROS, disruption of cellular structures, and induction of apoptosis, leading to enhanced tumour cell death. This review gives an insight about PDT/SDT and their limitations in GBM treatment and the need for combination therapy. We try to unveil the process of SPDT and explore the mechanism behind improved SPDT-meditated cell death in GBM cells by focusing on the ROS-mediated cell response occurring as a result of SPDT and discussing current modifications in the existing sensitisers for their optimal use in SPDT for GBM therapy.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"458-472"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photodynamic and sonodynamic therapy synergy: mechanistic insights and cellular responses against glioblastoma multiforme.\",\"authors\":\"Swati Sharma, Geetanjali B Gone, Parikshit Roychowdhury, Hyung Sik Kim, Sang Jeon Chung, Gowthmarajan Kuppusamy, Anindita De\",\"doi\":\"10.1080/1061186X.2024.2431676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma multiforme (GBM), the most aggressive form of brain cancer, poses substantial challenges to effective treatment due to its complex and infiltrative nature, making it difficult to manage. Photodynamic therapy (PDT) and sonodynamic therapy (SDT), have emerged as promising individual treatment options against GBM due to their least-invasive approach. However, both PDT and SDT have drawbacks that require careful consideration. A combination therapy using light and sound waves has gained attention, offering new avenues to overcome challenges from individual therapies. Sono-photodynamic therapy (SPDT) has been used against various tumours. Researchers are considering SPDT as a favourable alternative to the conventional therapies for GBM. SPDT offers complementary mechanisms of action, including the production of ROS, disruption of cellular structures, and induction of apoptosis, leading to enhanced tumour cell death. This review gives an insight about PDT/SDT and their limitations in GBM treatment and the need for combination therapy. We try to unveil the process of SPDT and explore the mechanism behind improved SPDT-meditated cell death in GBM cells by focusing on the ROS-mediated cell response occurring as a result of SPDT and discussing current modifications in the existing sensitisers for their optimal use in SPDT for GBM therapy.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":\" \",\"pages\":\"458-472\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2024.2431676\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2024.2431676","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Photodynamic and sonodynamic therapy synergy: mechanistic insights and cellular responses against glioblastoma multiforme.
Glioblastoma multiforme (GBM), the most aggressive form of brain cancer, poses substantial challenges to effective treatment due to its complex and infiltrative nature, making it difficult to manage. Photodynamic therapy (PDT) and sonodynamic therapy (SDT), have emerged as promising individual treatment options against GBM due to their least-invasive approach. However, both PDT and SDT have drawbacks that require careful consideration. A combination therapy using light and sound waves has gained attention, offering new avenues to overcome challenges from individual therapies. Sono-photodynamic therapy (SPDT) has been used against various tumours. Researchers are considering SPDT as a favourable alternative to the conventional therapies for GBM. SPDT offers complementary mechanisms of action, including the production of ROS, disruption of cellular structures, and induction of apoptosis, leading to enhanced tumour cell death. This review gives an insight about PDT/SDT and their limitations in GBM treatment and the need for combination therapy. We try to unveil the process of SPDT and explore the mechanism behind improved SPDT-meditated cell death in GBM cells by focusing on the ROS-mediated cell response occurring as a result of SPDT and discussing current modifications in the existing sensitisers for their optimal use in SPDT for GBM therapy.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.