{"title":"动态表面重组如何影响粒子内催化合作性","authors":"Bhawakshi Punia, Srabanti Chaudhury, Anatoly Kolomeisky","doi":"10.1063/5.0239455","DOIUrl":null,"url":null,"abstract":"<p><p>Recent experiments indicated that nanoparticles (NPs) might efficiently catalyze multiple chemical reactions, frequently exhibiting new phenomena. One of those surprising observations is intra-particle catalytic cooperativity, when the reactions at one active site can stimulate the reactions at spatially distant sites. Theoretical explanations of these phenomena have been presented, pointing out the important role of charged hole dynamics. However, the crucial feature of nanoparticles that can undergo dynamic structural surface rearrangements, potentially affecting the catalytic properties, has not yet been accounted for. We present a theoretical study of the effect of dynamic restructuring in NPs on intra-particle catalytic cooperativity. It is done by extending the original static discrete-state stochastic framework that quantitatively evaluates the catalytic communications. The dynamic restructuring is modeled as stochastic transitions between states with different dynamic properties of charged holes. Our analysis reveals that the communication times always decrease with increasing rates of dynamic restructuring, while the communication lengths exhibit a dynamic behavior that depends on how dynamic fluctuations affect migration and death rates of charged holes. Computer simulations fully support theoretical predictions. These findings provide important insights into the microscopic mechanisms of catalysis on single NPs, suggesting specific routes to rationally design more efficient catalytic systems.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 19","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How dynamic surface restructuring impacts intra-particle catalytic cooperativity.\",\"authors\":\"Bhawakshi Punia, Srabanti Chaudhury, Anatoly Kolomeisky\",\"doi\":\"10.1063/5.0239455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent experiments indicated that nanoparticles (NPs) might efficiently catalyze multiple chemical reactions, frequently exhibiting new phenomena. One of those surprising observations is intra-particle catalytic cooperativity, when the reactions at one active site can stimulate the reactions at spatially distant sites. Theoretical explanations of these phenomena have been presented, pointing out the important role of charged hole dynamics. However, the crucial feature of nanoparticles that can undergo dynamic structural surface rearrangements, potentially affecting the catalytic properties, has not yet been accounted for. We present a theoretical study of the effect of dynamic restructuring in NPs on intra-particle catalytic cooperativity. It is done by extending the original static discrete-state stochastic framework that quantitatively evaluates the catalytic communications. The dynamic restructuring is modeled as stochastic transitions between states with different dynamic properties of charged holes. Our analysis reveals that the communication times always decrease with increasing rates of dynamic restructuring, while the communication lengths exhibit a dynamic behavior that depends on how dynamic fluctuations affect migration and death rates of charged holes. Computer simulations fully support theoretical predictions. These findings provide important insights into the microscopic mechanisms of catalysis on single NPs, suggesting specific routes to rationally design more efficient catalytic systems.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"161 19\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0239455\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0239455","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
How dynamic surface restructuring impacts intra-particle catalytic cooperativity.
Recent experiments indicated that nanoparticles (NPs) might efficiently catalyze multiple chemical reactions, frequently exhibiting new phenomena. One of those surprising observations is intra-particle catalytic cooperativity, when the reactions at one active site can stimulate the reactions at spatially distant sites. Theoretical explanations of these phenomena have been presented, pointing out the important role of charged hole dynamics. However, the crucial feature of nanoparticles that can undergo dynamic structural surface rearrangements, potentially affecting the catalytic properties, has not yet been accounted for. We present a theoretical study of the effect of dynamic restructuring in NPs on intra-particle catalytic cooperativity. It is done by extending the original static discrete-state stochastic framework that quantitatively evaluates the catalytic communications. The dynamic restructuring is modeled as stochastic transitions between states with different dynamic properties of charged holes. Our analysis reveals that the communication times always decrease with increasing rates of dynamic restructuring, while the communication lengths exhibit a dynamic behavior that depends on how dynamic fluctuations affect migration and death rates of charged holes. Computer simulations fully support theoretical predictions. These findings provide important insights into the microscopic mechanisms of catalysis on single NPs, suggesting specific routes to rationally design more efficient catalytic systems.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.