Julija Simiene, Linas Kunigenas, Rimvile Prokarenkaite, Daiva Dabkeviciene, Egle Strainiene, Vaidotas Stankevicius, Saulius Cicenas, Kestutis Suziedelis
{"title":"miR-10a-3p 在非小细胞肺癌患者中的预后价值","authors":"Julija Simiene, Linas Kunigenas, Rimvile Prokarenkaite, Daiva Dabkeviciene, Egle Strainiene, Vaidotas Stankevicius, Saulius Cicenas, Kestutis Suziedelis","doi":"10.2147/OTT.S475644","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Poor lung cancer patients' outcomes and survival rates demand the discovery of new biomarkers for the specific, significant, and less invasive detection of non-small cell lung cancer (NSCLC) progression. The present study aimed to investigate the potential of miRNA expression as biomarkers in NSCLC utilizing a preclinical cell culture setup based on screening of miRNAs in NSCLC cells grown in 3D cell culture.</p><p><strong>Patients and methods: </strong>The study was performed using lung cancer cell lines, varying in different levels of aggressiveness: NCI-H1299, A549, Calu-1, and NCI-H23, as well as noncancerous bronchial epithelial cell line HBEC3, which were grown in 3D cell culture. Total RNA from all cell lines was extracted and small RNA libraries were prepared and sequenced using the Illumina NGS platform. The expression of 8 differentially expressed miRNAs was further validated in 89 paired tissue specimens and plasma samples obtained from NSCLC patients. Statistical analysis was performed to determine whether miRNA expression and clinicopathological characteristics of NSCLC patients could be considered as independent factors significantly influencing PFS or OS.</p><p><strong>Results: </strong>Differentially expressed miRNAs, including let-7d-3p, miR-10a-3p, miR-28-3p, miR-28-5p, miR-100-3p, miR-182-5p, miR-190a-5p, and miR-340-5p, were identified through next-generation sequencing in NSCLC cell lines with varying levels of aggressiveness. Validation of patient samples, including tumor and plasma specimens, revealed that out of the 8 investigated miRNAs, only plasma miR-10a-3p showed a significant increase, which was associated with significantly extended progression-free survival (PFS) (p=0.009). Furthermore, miR-10a-3p in plasma emerged as a statistically significant prognostic variable for NSCLC patients' PFS (HR: 0.5, 95% CI: 0.3-0.9, p=0.029).</p><p><strong>Conclusion: </strong>Our findings of screening miRNA expression patterns in NSCLC cells grown in 3D cell culture indicated that the expression level of circulating miR-10a-3p has the potential as a novel non-invasive biomarker to reflect the short-term prognosis of NSCLC patients.</p>","PeriodicalId":19534,"journal":{"name":"OncoTargets and therapy","volume":"17 ","pages":"1017-1032"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prognostic Value of miR-10a-3p in Non-Small Cell Lung Cancer Patients.\",\"authors\":\"Julija Simiene, Linas Kunigenas, Rimvile Prokarenkaite, Daiva Dabkeviciene, Egle Strainiene, Vaidotas Stankevicius, Saulius Cicenas, Kestutis Suziedelis\",\"doi\":\"10.2147/OTT.S475644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Poor lung cancer patients' outcomes and survival rates demand the discovery of new biomarkers for the specific, significant, and less invasive detection of non-small cell lung cancer (NSCLC) progression. The present study aimed to investigate the potential of miRNA expression as biomarkers in NSCLC utilizing a preclinical cell culture setup based on screening of miRNAs in NSCLC cells grown in 3D cell culture.</p><p><strong>Patients and methods: </strong>The study was performed using lung cancer cell lines, varying in different levels of aggressiveness: NCI-H1299, A549, Calu-1, and NCI-H23, as well as noncancerous bronchial epithelial cell line HBEC3, which were grown in 3D cell culture. Total RNA from all cell lines was extracted and small RNA libraries were prepared and sequenced using the Illumina NGS platform. The expression of 8 differentially expressed miRNAs was further validated in 89 paired tissue specimens and plasma samples obtained from NSCLC patients. Statistical analysis was performed to determine whether miRNA expression and clinicopathological characteristics of NSCLC patients could be considered as independent factors significantly influencing PFS or OS.</p><p><strong>Results: </strong>Differentially expressed miRNAs, including let-7d-3p, miR-10a-3p, miR-28-3p, miR-28-5p, miR-100-3p, miR-182-5p, miR-190a-5p, and miR-340-5p, were identified through next-generation sequencing in NSCLC cell lines with varying levels of aggressiveness. Validation of patient samples, including tumor and plasma specimens, revealed that out of the 8 investigated miRNAs, only plasma miR-10a-3p showed a significant increase, which was associated with significantly extended progression-free survival (PFS) (p=0.009). Furthermore, miR-10a-3p in plasma emerged as a statistically significant prognostic variable for NSCLC patients' PFS (HR: 0.5, 95% CI: 0.3-0.9, p=0.029).</p><p><strong>Conclusion: </strong>Our findings of screening miRNA expression patterns in NSCLC cells grown in 3D cell culture indicated that the expression level of circulating miR-10a-3p has the potential as a novel non-invasive biomarker to reflect the short-term prognosis of NSCLC patients.</p>\",\"PeriodicalId\":19534,\"journal\":{\"name\":\"OncoTargets and therapy\",\"volume\":\"17 \",\"pages\":\"1017-1032\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OncoTargets and therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/OTT.S475644\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OncoTargets and therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/OTT.S475644","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Prognostic Value of miR-10a-3p in Non-Small Cell Lung Cancer Patients.
Purpose: Poor lung cancer patients' outcomes and survival rates demand the discovery of new biomarkers for the specific, significant, and less invasive detection of non-small cell lung cancer (NSCLC) progression. The present study aimed to investigate the potential of miRNA expression as biomarkers in NSCLC utilizing a preclinical cell culture setup based on screening of miRNAs in NSCLC cells grown in 3D cell culture.
Patients and methods: The study was performed using lung cancer cell lines, varying in different levels of aggressiveness: NCI-H1299, A549, Calu-1, and NCI-H23, as well as noncancerous bronchial epithelial cell line HBEC3, which were grown in 3D cell culture. Total RNA from all cell lines was extracted and small RNA libraries were prepared and sequenced using the Illumina NGS platform. The expression of 8 differentially expressed miRNAs was further validated in 89 paired tissue specimens and plasma samples obtained from NSCLC patients. Statistical analysis was performed to determine whether miRNA expression and clinicopathological characteristics of NSCLC patients could be considered as independent factors significantly influencing PFS or OS.
Results: Differentially expressed miRNAs, including let-7d-3p, miR-10a-3p, miR-28-3p, miR-28-5p, miR-100-3p, miR-182-5p, miR-190a-5p, and miR-340-5p, were identified through next-generation sequencing in NSCLC cell lines with varying levels of aggressiveness. Validation of patient samples, including tumor and plasma specimens, revealed that out of the 8 investigated miRNAs, only plasma miR-10a-3p showed a significant increase, which was associated with significantly extended progression-free survival (PFS) (p=0.009). Furthermore, miR-10a-3p in plasma emerged as a statistically significant prognostic variable for NSCLC patients' PFS (HR: 0.5, 95% CI: 0.3-0.9, p=0.029).
Conclusion: Our findings of screening miRNA expression patterns in NSCLC cells grown in 3D cell culture indicated that the expression level of circulating miR-10a-3p has the potential as a novel non-invasive biomarker to reflect the short-term prognosis of NSCLC patients.
期刊介绍:
OncoTargets and Therapy is an international, peer-reviewed journal focusing on molecular aspects of cancer research, that is, the molecular diagnosis of and targeted molecular or precision therapy for all types of cancer.
The journal is characterized by the rapid reporting of high-quality original research, basic science, reviews and evaluations, expert opinion and commentary that shed novel insight on a cancer or cancer subtype.
Specific topics covered by the journal include:
-Novel therapeutic targets and innovative agents
-Novel therapeutic regimens for improved benefit and/or decreased side effects
-Early stage clinical trials
Further considerations when submitting to OncoTargets and Therapy:
-Studies containing in vivo animal model data will be considered favorably.
-Tissue microarray analyses will not be considered except in cases where they are supported by comprehensive biological studies involving multiple cell lines.
-Biomarker association studies will be considered only when validated by comprehensive in vitro data and analysis of human tissue samples.
-Studies utilizing publicly available data (e.g. GWAS/TCGA/GEO etc.) should add to the body of knowledge about a specific disease or relevant phenotype and must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Bioinformatics studies must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Single nucleotide polymorphism (SNP) studies will not be considered.