Nannan Fang, Conghui Jia, Ruolin Chen, Jiarui An, Zhensheng Kang, Jie Liu
{"title":"小麦 CC-NBS-LRR 蛋白 TaRGA3 通过抑制抗坏血酸过氧化物酶 6 的活性来增强对条锈病的抗性。","authors":"Nannan Fang, Conghui Jia, Ruolin Chen, Jiarui An, Zhensheng Kang, Jie Liu","doi":"10.1093/plphys/kiae603","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune receptors that activate innate immune responses upon sensing pathogen attack. However, the molecular mechanisms by which NLR proteins initiate downstream signal transduction pathways to counteract pathogen invasion remain poorly understood. In this study, we identified the wheat (Triticum aestivum) NLR protein Resistance Gene Analogs3 (TaRGA3), which was significantly upregulated during Puccinia striiformis f. sp. tritici (Pst) infection. TaRGA3 and its coiled-coil (CC) domain, localized to the cytoplasm and nucleus, can induce cell death in Nicotiana benthamiana. Virus-induced gene silencing and overexpression suggested that TaRGA3 contributed to wheat resistance to stripe rust by facilitating reactive oxygen species (ROS) accumulation. Yeast 2-hybrid, luciferase complementation imaging, and co-immunoprecipitation assays revealed that TaRGA3 interacted with wheat protein Ascorbate Peroxidase 6 (TaAPX6). Further analysis showed that TaAPX6 specifically targeted the CC domain of TaRGA3. The TaRGA3-TaAPX6 interplay led to reduced enzyme activity of TaAPX6. Notably, TaAPX6 negatively regulated wheat resistance to Pst by removing excessive ROS accompanying Pst-induced hypersensitive responses. Our findings reveal that TaRGA3 responding to Pst infection confers enhanced wheat resistance to stripe rust, possibly by suppressing TaAPX6-modulated ROS scavenging, and demonstrate that TaRGA3 can be used to engineer stripe rust resistance in wheat.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The wheat CC-NBS-LRR protein TaRGA3 confers resistance to stripe rust by suppressing ascorbate peroxidase 6 activity.\",\"authors\":\"Nannan Fang, Conghui Jia, Ruolin Chen, Jiarui An, Zhensheng Kang, Jie Liu\",\"doi\":\"10.1093/plphys/kiae603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune receptors that activate innate immune responses upon sensing pathogen attack. However, the molecular mechanisms by which NLR proteins initiate downstream signal transduction pathways to counteract pathogen invasion remain poorly understood. In this study, we identified the wheat (Triticum aestivum) NLR protein Resistance Gene Analogs3 (TaRGA3), which was significantly upregulated during Puccinia striiformis f. sp. tritici (Pst) infection. TaRGA3 and its coiled-coil (CC) domain, localized to the cytoplasm and nucleus, can induce cell death in Nicotiana benthamiana. Virus-induced gene silencing and overexpression suggested that TaRGA3 contributed to wheat resistance to stripe rust by facilitating reactive oxygen species (ROS) accumulation. Yeast 2-hybrid, luciferase complementation imaging, and co-immunoprecipitation assays revealed that TaRGA3 interacted with wheat protein Ascorbate Peroxidase 6 (TaAPX6). Further analysis showed that TaAPX6 specifically targeted the CC domain of TaRGA3. The TaRGA3-TaAPX6 interplay led to reduced enzyme activity of TaAPX6. Notably, TaAPX6 negatively regulated wheat resistance to Pst by removing excessive ROS accompanying Pst-induced hypersensitive responses. Our findings reveal that TaRGA3 responding to Pst infection confers enhanced wheat resistance to stripe rust, possibly by suppressing TaAPX6-modulated ROS scavenging, and demonstrate that TaRGA3 can be used to engineer stripe rust resistance in wheat.</p>\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae603\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae603","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The wheat CC-NBS-LRR protein TaRGA3 confers resistance to stripe rust by suppressing ascorbate peroxidase 6 activity.
Nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune receptors that activate innate immune responses upon sensing pathogen attack. However, the molecular mechanisms by which NLR proteins initiate downstream signal transduction pathways to counteract pathogen invasion remain poorly understood. In this study, we identified the wheat (Triticum aestivum) NLR protein Resistance Gene Analogs3 (TaRGA3), which was significantly upregulated during Puccinia striiformis f. sp. tritici (Pst) infection. TaRGA3 and its coiled-coil (CC) domain, localized to the cytoplasm and nucleus, can induce cell death in Nicotiana benthamiana. Virus-induced gene silencing and overexpression suggested that TaRGA3 contributed to wheat resistance to stripe rust by facilitating reactive oxygen species (ROS) accumulation. Yeast 2-hybrid, luciferase complementation imaging, and co-immunoprecipitation assays revealed that TaRGA3 interacted with wheat protein Ascorbate Peroxidase 6 (TaAPX6). Further analysis showed that TaAPX6 specifically targeted the CC domain of TaRGA3. The TaRGA3-TaAPX6 interplay led to reduced enzyme activity of TaAPX6. Notably, TaAPX6 negatively regulated wheat resistance to Pst by removing excessive ROS accompanying Pst-induced hypersensitive responses. Our findings reveal that TaRGA3 responding to Pst infection confers enhanced wheat resistance to stripe rust, possibly by suppressing TaAPX6-modulated ROS scavenging, and demonstrate that TaRGA3 can be used to engineer stripe rust resistance in wheat.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.