Enrico Baria, Caterina Dallari, Francesco Mattii, Francesco Saverio Pavone, Caterina Credi, Riccardo Cicchi, Amelia Morrone, Claudia Capitini, Martino Calamai
{"title":"通过拉曼光谱和表面增强拉曼光谱评估细胞内胆固醇的病理水平。","authors":"Enrico Baria, Caterina Dallari, Francesco Mattii, Francesco Saverio Pavone, Caterina Credi, Riccardo Cicchi, Amelia Morrone, Claudia Capitini, Martino Calamai","doi":"10.1038/s41598-024-76621-5","DOIUrl":null,"url":null,"abstract":"<p><p>Versatile methods for the quantification of intracellular cholesterol are essential for understanding cellular physiology and for diagnosing disorders linked to cholesterol metabolism. Here we used Raman spectroscopy (RS) and surface-enhanced Raman spectroscopy (SERS) to measure changes in cholesterol after incubating human fibroblasts with increasing concentrations of cholesterol-methyl-β-cyclodextrin. RS and SERS were sensitive and accurate enough to detect high levels of cholesterol in fibroblasts from patients affected by type C Niemann-Pick disease (NPC), a lysosomal storage disorder characterized by the primary accumulation of cholesterol. Moreover, SERS was able to distinguish between fibroblasts from different NPC patients, demonstrating higher accuracy than RS and standard fluorescent labeling of cholesterol with filipin III. We show that the type of gold nanoparticles used as signal enhancer surfaces in our SERS measurements are internalized by the cells and are eventually found in lysosomes, the main site of accumulation of cholesterol in NPC fibroblasts. The higher sensitivity of SERS can thus be attributed to the specific trafficking of our gold nanoparticles into these organelles. Our results indicate that RS and SERS can be used as sensitive and accurate methods for the evaluation of intracellular cholesterol content, allowing for the potential development of an optical detection tool for the ex-vivo screening and monitoring of those diseases characterized by abnormal modification in cholesterol levels.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"28566"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574121/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating pathological levels of intracellular cholesterol through Raman and surface-enhanced Raman spectroscopies.\",\"authors\":\"Enrico Baria, Caterina Dallari, Francesco Mattii, Francesco Saverio Pavone, Caterina Credi, Riccardo Cicchi, Amelia Morrone, Claudia Capitini, Martino Calamai\",\"doi\":\"10.1038/s41598-024-76621-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Versatile methods for the quantification of intracellular cholesterol are essential for understanding cellular physiology and for diagnosing disorders linked to cholesterol metabolism. Here we used Raman spectroscopy (RS) and surface-enhanced Raman spectroscopy (SERS) to measure changes in cholesterol after incubating human fibroblasts with increasing concentrations of cholesterol-methyl-β-cyclodextrin. RS and SERS were sensitive and accurate enough to detect high levels of cholesterol in fibroblasts from patients affected by type C Niemann-Pick disease (NPC), a lysosomal storage disorder characterized by the primary accumulation of cholesterol. Moreover, SERS was able to distinguish between fibroblasts from different NPC patients, demonstrating higher accuracy than RS and standard fluorescent labeling of cholesterol with filipin III. We show that the type of gold nanoparticles used as signal enhancer surfaces in our SERS measurements are internalized by the cells and are eventually found in lysosomes, the main site of accumulation of cholesterol in NPC fibroblasts. The higher sensitivity of SERS can thus be attributed to the specific trafficking of our gold nanoparticles into these organelles. Our results indicate that RS and SERS can be used as sensitive and accurate methods for the evaluation of intracellular cholesterol content, allowing for the potential development of an optical detection tool for the ex-vivo screening and monitoring of those diseases characterized by abnormal modification in cholesterol levels.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"28566\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574121/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-76621-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-76621-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Evaluating pathological levels of intracellular cholesterol through Raman and surface-enhanced Raman spectroscopies.
Versatile methods for the quantification of intracellular cholesterol are essential for understanding cellular physiology and for diagnosing disorders linked to cholesterol metabolism. Here we used Raman spectroscopy (RS) and surface-enhanced Raman spectroscopy (SERS) to measure changes in cholesterol after incubating human fibroblasts with increasing concentrations of cholesterol-methyl-β-cyclodextrin. RS and SERS were sensitive and accurate enough to detect high levels of cholesterol in fibroblasts from patients affected by type C Niemann-Pick disease (NPC), a lysosomal storage disorder characterized by the primary accumulation of cholesterol. Moreover, SERS was able to distinguish between fibroblasts from different NPC patients, demonstrating higher accuracy than RS and standard fluorescent labeling of cholesterol with filipin III. We show that the type of gold nanoparticles used as signal enhancer surfaces in our SERS measurements are internalized by the cells and are eventually found in lysosomes, the main site of accumulation of cholesterol in NPC fibroblasts. The higher sensitivity of SERS can thus be attributed to the specific trafficking of our gold nanoparticles into these organelles. Our results indicate that RS and SERS can be used as sensitive and accurate methods for the evaluation of intracellular cholesterol content, allowing for the potential development of an optical detection tool for the ex-vivo screening and monitoring of those diseases characterized by abnormal modification in cholesterol levels.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.