TingTing Hu , Jishou Wu , Zixuan Lin , Yi Lin , Lin Lin , Wei Wei , Dongzhi Wei
{"title":"谷氨酰胺合成酶 PbgsA 对破伤风青霉的生长、分生孢子和产生霉酚酸的影响。","authors":"TingTing Hu , Jishou Wu , Zixuan Lin , Yi Lin , Lin Lin , Wei Wei , Dongzhi Wei","doi":"10.1016/j.fgb.2024.103941","DOIUrl":null,"url":null,"abstract":"<div><div>Glutamine synthetase (GS) is a critical enzyme in nitrogen metabolism regulation and plays an essential role in the metabolic pathways involved in microbial growth and development. <em>Penicillium brevicompactum</em>, known for its rich repertoire of secondary metabolites, including mycophenolic acid (MPA), lacks research on the regulatory mechanisms of GS within this species. This study aimed to investigate the influence of GS on the growth, sporulation, and secondary metabolism of <em>P. brevicompactum</em> to elucidate the biological function of GS in this organism. We identified the glutamine synthetase gene (<em>PbgsA</em>) from <em>P. brevicompactum</em> and constructed <em>PbgsA</em> gene-overexpression and gene-silencing transformants. The impact of PbgsA on growth and sporulation was evaluated, revealing that <em>PbgsA</em> gene-overexpression transformants exhibited enhanced growth and significantly increased the expression levels of sporulation pathway genes (<em>brlA</em>, <em>abaA</em>, and <em>wetA</em>). Additionally, <em>PbgsA</em> gene-overexpression transformants produced higher MPA yields, with a maximum of 4.78 g/L, representing a 54.19 % increase compared to the wild type (WT). Conversely, <em>PbgsA</em> gene-silencing transformants showed reduced MPA production, with a minimum yield of 1.13 g/L, a 63.55 % decrease relative to the WT. Transcriptional analysis of the MPA biosynthetic gene cluster indicated that PbgsA exerted regulatory effects on certain biosynthetic pathway genes, such as <em>mpaA</em> and <em>mpaB</em>. This study demostrated the potential positive regulatory role of glutamine synthetase PbgsA in the growth, spore development, and secondary metabolism of <em>P. brevicompactum</em>, which provided a new strategy for genetic regulation in filamentous fungal.</div></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":"175 ","pages":"Article 103941"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of glutamine synthetase PbgsA on the growth, conidiation and mycophenolic acid production of Penicillium brevicompactum\",\"authors\":\"TingTing Hu , Jishou Wu , Zixuan Lin , Yi Lin , Lin Lin , Wei Wei , Dongzhi Wei\",\"doi\":\"10.1016/j.fgb.2024.103941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Glutamine synthetase (GS) is a critical enzyme in nitrogen metabolism regulation and plays an essential role in the metabolic pathways involved in microbial growth and development. <em>Penicillium brevicompactum</em>, known for its rich repertoire of secondary metabolites, including mycophenolic acid (MPA), lacks research on the regulatory mechanisms of GS within this species. This study aimed to investigate the influence of GS on the growth, sporulation, and secondary metabolism of <em>P. brevicompactum</em> to elucidate the biological function of GS in this organism. We identified the glutamine synthetase gene (<em>PbgsA</em>) from <em>P. brevicompactum</em> and constructed <em>PbgsA</em> gene-overexpression and gene-silencing transformants. The impact of PbgsA on growth and sporulation was evaluated, revealing that <em>PbgsA</em> gene-overexpression transformants exhibited enhanced growth and significantly increased the expression levels of sporulation pathway genes (<em>brlA</em>, <em>abaA</em>, and <em>wetA</em>). Additionally, <em>PbgsA</em> gene-overexpression transformants produced higher MPA yields, with a maximum of 4.78 g/L, representing a 54.19 % increase compared to the wild type (WT). Conversely, <em>PbgsA</em> gene-silencing transformants showed reduced MPA production, with a minimum yield of 1.13 g/L, a 63.55 % decrease relative to the WT. Transcriptional analysis of the MPA biosynthetic gene cluster indicated that PbgsA exerted regulatory effects on certain biosynthetic pathway genes, such as <em>mpaA</em> and <em>mpaB</em>. This study demostrated the potential positive regulatory role of glutamine synthetase PbgsA in the growth, spore development, and secondary metabolism of <em>P. brevicompactum</em>, which provided a new strategy for genetic regulation in filamentous fungal.</div></div>\",\"PeriodicalId\":55135,\"journal\":{\"name\":\"Fungal Genetics and Biology\",\"volume\":\"175 \",\"pages\":\"Article 103941\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Genetics and Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1087184524000781\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1087184524000781","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The impact of glutamine synthetase PbgsA on the growth, conidiation and mycophenolic acid production of Penicillium brevicompactum
Glutamine synthetase (GS) is a critical enzyme in nitrogen metabolism regulation and plays an essential role in the metabolic pathways involved in microbial growth and development. Penicillium brevicompactum, known for its rich repertoire of secondary metabolites, including mycophenolic acid (MPA), lacks research on the regulatory mechanisms of GS within this species. This study aimed to investigate the influence of GS on the growth, sporulation, and secondary metabolism of P. brevicompactum to elucidate the biological function of GS in this organism. We identified the glutamine synthetase gene (PbgsA) from P. brevicompactum and constructed PbgsA gene-overexpression and gene-silencing transformants. The impact of PbgsA on growth and sporulation was evaluated, revealing that PbgsA gene-overexpression transformants exhibited enhanced growth and significantly increased the expression levels of sporulation pathway genes (brlA, abaA, and wetA). Additionally, PbgsA gene-overexpression transformants produced higher MPA yields, with a maximum of 4.78 g/L, representing a 54.19 % increase compared to the wild type (WT). Conversely, PbgsA gene-silencing transformants showed reduced MPA production, with a minimum yield of 1.13 g/L, a 63.55 % decrease relative to the WT. Transcriptional analysis of the MPA biosynthetic gene cluster indicated that PbgsA exerted regulatory effects on certain biosynthetic pathway genes, such as mpaA and mpaB. This study demostrated the potential positive regulatory role of glutamine synthetase PbgsA in the growth, spore development, and secondary metabolism of P. brevicompactum, which provided a new strategy for genetic regulation in filamentous fungal.
期刊介绍:
Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny.
Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists.
Research Areas include:
• Biochemistry
• Cytology
• Developmental biology
• Evolutionary biology
• Genetics
• Molecular biology
• Phylogeny
• Physiology.