Bianca Vora, Ashutosh Jindal, Erick Velasquez, James Lu, Benjamin Wu
{"title":"真实世界数据与机器学习的整合:评估在真实世界中使用阿特珠单抗替代静脉给药方案的协变量重要性的框架。","authors":"Bianca Vora, Ashutosh Jindal, Erick Velasquez, James Lu, Benjamin Wu","doi":"10.1111/cts.70077","DOIUrl":null,"url":null,"abstract":"<p><p>The increase in the availability of real-world data (RWD), in combination with advances in machine learning (ML) methods, provides a unique opportunity for the integration of the two to explore complex clinical pharmacology questions. Here we present a recently developed RWD/ML framework that utilizes ML algorithms to understand the influence and importance of various covariates on the use of a given dose and schedule for drugs that have multiple approved dosing regimens. To demonstrate the application of this framework, we present atezolizumab as a use case on account of its three approved alternative intravenous (IV) dosing regimens. As expected, the real-world use of atezolizumab has generally been increasing since 2016 for the 1200 mg every 3 weeks regimen and since 2019 for the 1680 mg every 4 weeks regimen. Out of the ML algorithms evaluated, XGBoost performed the best, as measured by the area under the precision-recall curve, with an emphasis on the under-sampled class given the imbalance in the data. The importance of features was measured by Shapley Additive exPlanations (SHAP) values and showed metastatic breast cancer and use of protein-bound paclitaxel as the most correlated with the use of 840 mg every 2 weeks. Although patient usage data for alternative IV dosing regimens are still maturing, these analyses provide initial insights on the use of atezolizumab and set up a framework for the re-analysis of atezolizumab (at a future data cut) as well as application to other molecules with approved alternative dosing regimens.</p>","PeriodicalId":50610,"journal":{"name":"Cts-Clinical and Translational Science","volume":"17 11","pages":"e70077"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating real-world data and machine learning: A framework to assess covariate importance in real-world use of alternative intravenous dosing regimens for atezolizumab.\",\"authors\":\"Bianca Vora, Ashutosh Jindal, Erick Velasquez, James Lu, Benjamin Wu\",\"doi\":\"10.1111/cts.70077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increase in the availability of real-world data (RWD), in combination with advances in machine learning (ML) methods, provides a unique opportunity for the integration of the two to explore complex clinical pharmacology questions. Here we present a recently developed RWD/ML framework that utilizes ML algorithms to understand the influence and importance of various covariates on the use of a given dose and schedule for drugs that have multiple approved dosing regimens. To demonstrate the application of this framework, we present atezolizumab as a use case on account of its three approved alternative intravenous (IV) dosing regimens. As expected, the real-world use of atezolizumab has generally been increasing since 2016 for the 1200 mg every 3 weeks regimen and since 2019 for the 1680 mg every 4 weeks regimen. Out of the ML algorithms evaluated, XGBoost performed the best, as measured by the area under the precision-recall curve, with an emphasis on the under-sampled class given the imbalance in the data. The importance of features was measured by Shapley Additive exPlanations (SHAP) values and showed metastatic breast cancer and use of protein-bound paclitaxel as the most correlated with the use of 840 mg every 2 weeks. Although patient usage data for alternative IV dosing regimens are still maturing, these analyses provide initial insights on the use of atezolizumab and set up a framework for the re-analysis of atezolizumab (at a future data cut) as well as application to other molecules with approved alternative dosing regimens.</p>\",\"PeriodicalId\":50610,\"journal\":{\"name\":\"Cts-Clinical and Translational Science\",\"volume\":\"17 11\",\"pages\":\"e70077\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cts-Clinical and Translational Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/cts.70077\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cts-Clinical and Translational Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cts.70077","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Integrating real-world data and machine learning: A framework to assess covariate importance in real-world use of alternative intravenous dosing regimens for atezolizumab.
The increase in the availability of real-world data (RWD), in combination with advances in machine learning (ML) methods, provides a unique opportunity for the integration of the two to explore complex clinical pharmacology questions. Here we present a recently developed RWD/ML framework that utilizes ML algorithms to understand the influence and importance of various covariates on the use of a given dose and schedule for drugs that have multiple approved dosing regimens. To demonstrate the application of this framework, we present atezolizumab as a use case on account of its three approved alternative intravenous (IV) dosing regimens. As expected, the real-world use of atezolizumab has generally been increasing since 2016 for the 1200 mg every 3 weeks regimen and since 2019 for the 1680 mg every 4 weeks regimen. Out of the ML algorithms evaluated, XGBoost performed the best, as measured by the area under the precision-recall curve, with an emphasis on the under-sampled class given the imbalance in the data. The importance of features was measured by Shapley Additive exPlanations (SHAP) values and showed metastatic breast cancer and use of protein-bound paclitaxel as the most correlated with the use of 840 mg every 2 weeks. Although patient usage data for alternative IV dosing regimens are still maturing, these analyses provide initial insights on the use of atezolizumab and set up a framework for the re-analysis of atezolizumab (at a future data cut) as well as application to other molecules with approved alternative dosing regimens.
期刊介绍:
Clinical and Translational Science (CTS), an official journal of the American Society for Clinical Pharmacology and Therapeutics, highlights original translational medicine research that helps bridge laboratory discoveries with the diagnosis and treatment of human disease. Translational medicine is a multi-faceted discipline with a focus on translational therapeutics. In a broad sense, translational medicine bridges across the discovery, development, regulation, and utilization spectrum. Research may appear as Full Articles, Brief Reports, Commentaries, Phase Forwards (clinical trials), Reviews, or Tutorials. CTS also includes invited didactic content that covers the connections between clinical pharmacology and translational medicine. Best-in-class methodologies and best practices are also welcomed as Tutorials. These additional features provide context for research articles and facilitate understanding for a wide array of individuals interested in clinical and translational science. CTS welcomes high quality, scientifically sound, original manuscripts focused on clinical pharmacology and translational science, including animal, in vitro, in silico, and clinical studies supporting the breadth of drug discovery, development, regulation and clinical use of both traditional drugs and innovative modalities.