{"title":"直接测量近场电场的实际强度","authors":"Yihang Fan, Jianqiao Zhao, Fei Yang, Xiaotian Xue, Weipeng Wang, Ji Zhou, Zhengjun Zhang","doi":"10.1063/5.0226084","DOIUrl":null,"url":null,"abstract":"Measurement of the real strength value of near-field electric fields is of great importance for understanding light–matter interactions in nanophotonics, which is a big challenge in the field. We developed in this study a theory and approaches for directly measuring the real strength of near-field electric fields by scattering type scanning near-field optical microscope (s-SNOM). The validity of the theory and approaches was confirmed by comparing s-SNOM measurement results with the finite element method simulations. Our efforts enable s-SNOM as a quantitative tool in clarifying light–matter interactions in a variety of fields, such as all-optical chips, plasmon-induced catalysis, metamaterials and metasurfaces, enhanced spectroscopy, and van der Waals materials, etc.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"8 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct measurement of the real strength of near-field electric field\",\"authors\":\"Yihang Fan, Jianqiao Zhao, Fei Yang, Xiaotian Xue, Weipeng Wang, Ji Zhou, Zhengjun Zhang\",\"doi\":\"10.1063/5.0226084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measurement of the real strength value of near-field electric fields is of great importance for understanding light–matter interactions in nanophotonics, which is a big challenge in the field. We developed in this study a theory and approaches for directly measuring the real strength of near-field electric fields by scattering type scanning near-field optical microscope (s-SNOM). The validity of the theory and approaches was confirmed by comparing s-SNOM measurement results with the finite element method simulations. Our efforts enable s-SNOM as a quantitative tool in clarifying light–matter interactions in a variety of fields, such as all-optical chips, plasmon-induced catalysis, metamaterials and metasurfaces, enhanced spectroscopy, and van der Waals materials, etc.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226084\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0226084","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Direct measurement of the real strength of near-field electric field
Measurement of the real strength value of near-field electric fields is of great importance for understanding light–matter interactions in nanophotonics, which is a big challenge in the field. We developed in this study a theory and approaches for directly measuring the real strength of near-field electric fields by scattering type scanning near-field optical microscope (s-SNOM). The validity of the theory and approaches was confirmed by comparing s-SNOM measurement results with the finite element method simulations. Our efforts enable s-SNOM as a quantitative tool in clarifying light–matter interactions in a variety of fields, such as all-optical chips, plasmon-induced catalysis, metamaterials and metasurfaces, enhanced spectroscopy, and van der Waals materials, etc.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.